The equation of pair of tangent to the circle \(x^{2}+y^{2}+2 g x+2 f y+c=0\) from point \(\left(x_{1}, y_{1}\right)\) is
\(\left(x^{2}+y^{2}+2 g x+2 f y+c\right)\left(x_{1}^{2}+y_{1}^{2}+2 g x_{1}+2 f y_{1}+c\right)\)
\(=\left[x x_{1}+y y_{1}+f\left(x+x_{1}\right)+f\left(y+y_{1}\right)+c\right]^{2}\)
Thus, the equation of pair of tangent to the circle \(x^{2}+y^{2}-2 x-2 h y+h^{2}=0\)
from origin (0,0) is \(\left(x^{2}+y^{2}-2 r x-2 h y+h^{2}\right)\left(0^{2}+0^{2}-2 r 0-2 h 0+h^{2}\right)=\)
\(\left[x 0+y 0-r(x+0)-h(y+0)+h^{2}\right]^{2}\)
\(\Rightarrow\left(x^{2}+y^{2}-2 r x-2 h y+h^{2}\right)\left(h^{2}\right)=\left[-r x-h y+h^{2}\right]^{2}\)
\(\Rightarrow x^{2} h^{2}+h^{2} y^{2}-2 h^{2} r x-2 h^{3} y+h^{4}=\)
\(r^{2} x^{2}+h^{2} y^{2}+h^{4}+2 r x y-2 h^{3} y-2 r x h^{2}\)
\(\Rightarrow h^{2} x^{2}=r^{2} x^{2}+2 r h x y\)
\(\Rightarrow h^{2} x^{2}-r^{2} x^{2}-2 r h y=0\)
\(\Rightarrow x\left(h^{2} x-r^{2} x-2 r h y\right)=0\)
\(\left.\Rightarrow x\left(h^{2}-r^{2}\right) x-2 r h y\right)=0\)
tangent to the circle \(\left(h^{2}-r^{2}\right) x-2 r h y=0, x=0\)
Hence option A is the correct answer.