Self Studies

IMO - Mock Test - 2

Result Self Studies

IMO - Mock Test - 2
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Which of the following numbers comes next in the series ?

    7, 11, 8, 12, 9, 13, .......

    Solution

    This is a simple alternating addition and subtraction series.
    4 is added in the first pattern and 3 is subtracted in the second.
    That is:
    7 + 4 = 11
    11 - 3 = 8
    8 + 4 = 12
    12 - 3 = 9
    9 + 4 = 13
    13 - 3 = 10

     

  • Question 2
    1 / -0

    Find the missing pair of letters in the given question.

    DGH : FCN :: MHG : _____

    Solution

    D = (+2) = F
    G = (-4) = C
    H = (+6) = N
    Similarly, M = (+2) = O
    H = (-4) = D
    G = (+6) = M

     

  • Question 3
    1 / -0

    Complete the series.

    1, 8, 27, 64, 125, ?

    Solution

    13 = 1, 2= 8, 3= 27, 4= 64, 5= 125, 6= 216

     

  • Question 4
    1 / -0

    If PREPARE is coded as RPGNCPG, then REMEMBER should be coded as

    Solution

    P + 2 = R

    R - 2 = P

    E + 2 = G

    P - 2 = N

    Similarly, R + 2 = T

    E - 2 = C

    M + 2 = O

    E - 2 = C

    M + 2 = O

    B - 2 = Z

    E + 2 = G

    R - 2 = P

     

  • Question 5
    1 / -0

    Rearrange the following letters to make a single word and then choose the category to which it belongs?

    NABAAN

    Solution

    By rearranging the letters, we get BANANA and Banana belongs to fruit category.

     

  • Question 6
    1 / -0

    Complete the pattern.

    56, 49, ?, 35, ?, 21, 14

    Solution

    7 is subtracted from the previous number every time.
    56 - 7 = 49
    49 - 7 = 42
    42 - 7 = 35
    35 - 7 = 28
    28 - 7 = 21
    21 - 7 = 14

     

  • Question 7
    1 / -0

    `Able' is related to lbea and Dust is 'sutd'. Base is related to`saeb` in the same way as `Feet` is related to

    Solution

    The first letter becomes the fourth, the second letter remains second, the third becomes the first and the last becomes the third.

     

  • Question 8
    1 / -0

    Arrange the given words in the sequence they occur in the dictionary and then choose the correct sequence.

    1. Welfare
    2. Weigh
    3. Weekend
    4. Western
    5. Wedding

    Solution

    The correct sequence of the words according to the dictionary is
    5. Wedding
    3. Weekend
    2. Weigh
    1. Welfare
    4. Western

     

  • Question 9
    1 / -0

    Which of the following statements is true if '%' stands for 'x' , '@' stands for '÷', '$' stands for '-' and '&' stands for '+' ?

    Solution

    % = x
    @ = ÷
    $ = -
    & = +

    Therefore, 25 ÷ 5 x 10 + 20 - 15 = 55

     

     

  • Question 10
    1 / -0

    Find the difference between the 8th and 6th term of the series.

    20, 25, 30, .....

    Solution

    The first term of the series is a = 20
    The common difference = d = 25 - 20 = 5
    So, the 8th term of the series = a + (n - 1)d = a + 7d = 20 + 35 = 55
    The sixth term of the series = a + (n - 1)d = 20 + 5 x 5 = 20 + 25 = 45
    So, the difference = 55 - 45 = 10

     

  • Question 11
    1 / -0

    Find the first term of the series whose seventh term is 75 and whose tenth term is 111.

    Solution

    The nth term of the series is a + (n - 1)d.
    The seventh term of the series = a + 6d = 75
    The tenth term of the series = a + 9d = 111
    So, subtract the seventh term from the tenth term.
    3d = 36
    d = 12
    Substituting this value, a + 72 = 75
    a = 3

     

  • Question 12
    1 / -0

    Find the common root for the quadratic equations x2 + 7x + 12 = 0 and 2x2 + 7x + 3 = 0.

    Solution

    x2 + 7+ 12

    Splitting the middle term, x2 + 4x + 3x + 12 = x(x + 4) + 3(x + 4)

    (x + 4)(x + 3) = 0

    x = -4, - 3

    Similarly, 2x2 + 7+ 3 = 0

    2x2 + 6x + 1x + 3 = 0

    2x(x + 3) + 1(x + 3) = 0

    (x + 3)(2x + 1) = 0

    x = - 3 and - 1/2

    So, the common factor is - 3.

     

  • Question 13
    1 / -0

    What is the value of the given expression?

    (cotx - cosecx + cotx + cosecx)

    Solution

    Given expression is (cotx + cotx) - (cosecx - cosecx)

    = cotx(cotx + 1) - cosecx(cosecx - 1)

    = cotx cosecx - cosecx cotx = 0

     

  • Question 14
    1 / -0

    A jar contains 48 marbles, some are red and others are yellow. If a marble is drawn at random from the jar, the probability of getting a red marble is 5/6. Find the number of yellow marbles in the jar.

    Solution

    Total number of marbles = 48

    Probability of getting a red marble = 5/6

    Number of red marbles = 5/6 × 48 = 40

    So, number of yellow marbles = 48 - 40 = 8

     

  • Question 15
    1 / -0

    The angles of a quadrilateral are in ratio 5 : 8 : 4 : 7. Find all the angles of the quadrilateral.

    Solution

    We will assume common ratio between angles to be 'x' and then see the total of all internal angles in a quadrilateral is 360o.

    Using that, we can find the value of 'x' and then angles accordingly.

    5x + 8x + 4x + 7x = 360o

    24x = 360

    x = 360/24 = 15

    5x = 5 × 15 = 75o

    8x = 8 × 15 = 120o

    4x = 4 × 15 = 60o

    7x = 7 × 15 = 105o

     

  • Question 16
    1 / -0

    If mode = 90 and median = 110, then mean is

    Solution

    Mode = 3 Median - 2 Mean
    Substituting the values: 90 = 3(110) - 2 Mean
    90 = 330 - 2 Mean
    2 Mean = 330 - 90
    2 Mean = 240
    Mean = 120

     

  • Question 17
    1 / -0

    If the area of a rectangle and that of a square are equal and the length of the rectangle is bigger than its width by 6 cm, then what is the length of the side of the square if the width of the rectangle is 30 cm?

    Solution

    Let s be the side of the square.
    If the width of the rectangle is 30 cm, its length would be 36 cm.
    Area of the rectangle = Area of the square
    l x w = s2
    36 x 30 = s2
    1080 = s2
    s = 32.86 cm

     

  • Question 18
    1 / -0

    At Downtown Burger, cheese burgers and chicken burgers are available. 6 of the last 12 customers wanted cheese burgers. What is the probability that the next customer will also want a cheese burger?

    Solution

    The experimental probability is the number of times an event occurs out of the total number of trials. Write the experimental probability as a fraction in its simplest form.
    P(Cheese) = Cheese/Total = 1/2
    So, the probability of the next customer wanting cheese burger is ½.

     

  • Question 19
    1 / -0

    Months ago, a store purchased a chalkboard and priced it at Rs. 8000. The store needed to clear out space, so the manager decided to sell the chalkboard at 45% of the marked price. If Ellie, who earns a 7% commission on the sale price, sold the chalkboard, then how much commission did she make?

    Solution

    First find the discount price. Write 45% as the decimal 0.45 before using it in the equation.

    Discounted price = Original price – Discount = 8000 – 0.45 x 8000 = 8000 – 3600 = 4400

    The discounted price was Rs. 4400.

    Now, find the commission. Write 7% as the decimal 0.07 before using it in the equation.

    Commission = Commission percentage × Sales = 0.07 x 4400 = 308

    The commission was Rs. 308.

     

  • Question 20
    1 / -0

    There are 247 men and 156 women in HDFC bank headquarters. The bank's Chairman wants to divide employees in two sections such that a section can have only men bankers or only women bankers. If each section has same number of bankers in a row and the Chairman wants to have as few rows in each section as possible, then find the number of rows in HDFC bank headquarters.

    Solution

    HCF of 247 and 156.

    All prime factors of 247 and 156 = 13

    So, each one will be arranged in 13 rows.

     

  • Question 21
    1 / -0

    A pipe can fill a tank in 10 minutes, while a leak present in the tank can empty it in 25 minutes. Unaware of the leak, the owner opens the pipe to fill the tank. After a few minutes, he seals the leak and the pipe fills the rest of the tank in 6 minutes. Find the total time taken to fill the tank.

    Solution

    The portion of the tank filled when the pipe as well as the leak were open = 1/10 + 1/25 = 1/30

    If x is the time taken to fill the tank when pipe and leak were open, then portion of the tank filled in x minutes = x/30

    Remaining portion to be filled when the leak was sealed = 1 - x/30 = (30 - x)/30

    Time taken to fill the remaining portion of the tank = 6 minutes

    (30 - x)/30 = 6/10

    Solving the above equation, we get
    x = 12 minutes

    Total time taken to fill the tank = 6 minutes + 12 minutes = 18 minutes

     

  • Question 22
    1 / -0

    Chetan brought 150 chocolates and distributed them among his two best friends Mike and Peter. Mike got 16% more chocolates than Peter. The ratio of the chocolates present with Mike and Peter is

    Solution

    Assume that Mike got x% chocolates and Peter got (x - 16)% chocolates.

    As the number of chocolates brought by Chetan is 100%, we can equate the problem as

    100 = x + (x - 16)

    x = 58

    If Mike got 58% of the chocolates, then Peter got (58 - 16) % of the total chocolates i.e. 42%.

    Chocolates received by Mike = 0.58 × 150 = 87

    Chocolates received by Peter = 0.42 × 150 = 63

    Therefore, the ratio is 87 : 63 = 29 : 21

     

  • Question 23
    1 / -0

    Age of three brothers P, Q and R is in the ratio 3 : 1 : 5, respectively. After 5 years, P will be twice as old as Q. How many years was P younger to R five years ago?

    Solution

    The present ratio of P to Q is 3 : 1 and after 5 years, the ratio will be 2 : 1.

    (3x + 5)/(x + 5) = 2/1

    3x + 5 = 2x + 10

    x = 5

    The present age of P is 15 years and that of R is 25 years.

    Five years back, age of P was 10 years and that of R was 20 years.

    P was 10 years younger than R 5 years ago.

     

  • Question 24
    1 / -0

    A builder decides to fill the floor of a bed room using designer tiles costing Rs. 70 each. Each tile is a square and the dimension of the bed room is 6 m x 4.40 m. What was the minimum cost incurred while flooring the bed room?

    Solution

    Given that the tiles required for flooring are square. Hence, the length of the tile should be equal to the width of the tile.

    As the number of tiles required needs to be an integer value, the side of the square tile has to be a factor of the dimensions of the room.

    Therefore, side of each square = HCF of 600 cm and 440 cm = 40 cm

    Number of tiles required = (Area of bed room)/(Area of each tile) = (600 × 440)/(40 x 40) = 165

    If price of each tile is Rs. 70, then minimum cost incurred = 165 × 70 = Rs. 11550

     

  • Question 25
    1 / -0

    A crow comes and drinks water from a mud pot after every 30 minutes. It starts coming from 11 am onward till 5 pm. How many times will it come to drink water in a week?

    Solution

    Number of hours in a day = 24
    Number of hours in between 11 am and 5 pm = 6
    Number of times crow comes in an hour = 2 (i.e after every 30 minutes)
    Therefore, in 6 hours, it will come 12 times.
    Number of days in a week = 7
    Hence, number of times in a week = 12 × 7 = 84 times

     

  • Question 26
    1 / -0

    Fill in the blanks.

    1. The centre of the circle lies in _______ of the circle.
    2. A point whose distance from the centre of the circle is greater that its radius lies in ______ of the circle.
    3. The longest chord of the circle is the ______ of the circle.

    Solution

    1. The centre of the circle lies in interior of the circle.
    2. A point whose distance from the centre of the circle is greater that its radius lies in exterior of the circle.
    3. The longest chord of the circle is a diameter of the circle.

     

  • Question 27
    1 / -0

    In a cricket match, a batsman hits a boundary 8 times out of 40 balls he plays. Find the probability of not hitting a boundary.

    Solution

    Batsman played 40 balls.

    Therefore, total number of trials (S) = 40 where, S is the sample space.

    Let, E be the event of hitting the boundary = 8

    The number of balls not hitting the boundary = E = 40 - 8 = 32

    The probability of not hitting a boundary = E/S = 32/40

     

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now