Self Studies

Coordinate Geometry Test - 26

Result Self Studies

Coordinate Geometry Test - 26
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$A(5,1)$$, $$B(1,5)$$ and $$C(-3, -1)$$ are the vertices of $$\Delta ABC$$. The length of its median AD is:
    Solution
    A median of a triangle is a line segment that joins the vertex of a triangle to the midpoint of the opposite side.

    Mid point of two points $$ { (x }_{ 1 },{ y }_{ 1 }) $$ and $$ { (x }_{ 2 },{ y}_{ 2 }) $$ is  calculated by the formula $$ \left( \dfrac { { x }_{ 1 }+{x }_{ 2 } }{ 2 } ,\dfrac { { y }_{ 1 }+y_{ 2 } }{ 2 }  \right) $$

    Since AD is the median, this means, D is the mid point of BC. 

    Using this formula,
    mid point of BC $$= \left( \dfrac { 1-3 }{ 2 } ,\dfrac { 5 - 1 }{ 2 }  \right) = (-1,2) $$


    Distance between two points $$ \left( { x }_{ 1 },{ y }_{ 1

    } \right) $$ and $$ \left( { x }_{ 2 },{ y }_{ 2 } \right) $$ can be calculated

    using the formula $$ \sqrt { \left( { x }_{ 2 }-{ x }_{ 1 } \right) ^{ 2}+\left( { y }_{ 2 }-{ y }_{ 1 } \right) ^{ 2 } } $$

    Distance between the points A$$ (5,1) $$ and D $$ (-1,2) = \sqrt { \left( -1-5\right) ^{ 2 }+\left( 2 - 1 \right) ^{ 2 } } = \sqrt { 36 + 1} = \sqrt { 37 } $$

  • Question 2
    1 / -0
    The coordinates of the centre of a circle are $$(-6,1.5)$$. If the ends of a diameter are $$(-3,y)$$ and $$(x, -2)$$ then:
    Solution
    The center of the circle lies at the midpoint of the diameter.
    Mid-point of two points $$ { (x }_{ 1 },{ y }_{ 1 }) $$ and $$ { (x }_{ 2 },{ y }_{2 }) $$ is calculated by the formula $$ \left( \dfrac { { x }_{ 1 }+{ x }_{ 2 } }{ 2 },\dfrac { { y }_{ 1 }+y_{ 2 } }{ 2 }  \right) .$$

    Using this formula, mid point of $$ (3,y) $$ and $$ (x,2)$$ will be,
    $$(-6, 1.5) =\left( \dfrac { -3 + x }{ 2 } ,\dfrac { y - 2 }{ 2 } \right) $$
    $$ \Rightarrow  \dfrac { -3 + x }{ 2 } = -6  $$ and $$ \dfrac{y - 2}{2} = 1.5 $$
    $$ \Rightarrow  { -3 + x } = -12  $$ and $$ {y - 2}= 3 $$
    $$\Rightarrow x = - 9$$ and $$  y = 5 $$
  • Question 3
    1 / -0
    Consider the points $$A( a, b + c)$$, $$B(b, c + a)$$, and $$C(c, a +b)$$ be the vertices of $$\bigtriangleup$$ABC. The area of $$\bigtriangleup$$ABC is:
    Solution
    We know that the area of the triangle whose vertices are $$\displaystyle (x_{1},y_{1}),(x_{2},y_{2}),$$ and $$(x_{3},y_{3})$$ is $$\cfrac{1}{2}\left | x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1}) +x_{3}(y_{1}-y_{2})\right |$$
    Since, vertices are $$A(a, b + c),~ B(b, c + a),$$ and $$ C(c, a + b)$$
    $$\therefore$$ Area $$ \bigtriangleup ABC = \dfrac{1}{2}|a(c + a) -b(b + c) + b(a + b) - c(c + a) +c(b + c) -a(a + b)|=0$$ .
    Hence option 'D' is correct.
  • Question 4
    1 / -0
    The vertices of a parallelogram are $$(3, -2),\;(4,0),\;(6, -3)$$ and $$(5, -5)$$. The diagonals intersect at the point $$M$$. The coordinates of the point $$M$$ are:
    Solution
    The diagonals of a parallelogram bisect each other. Hence $$M$$ is the midpoint of the opposite vertices $$ (3,-2),\;(6,-3) $$ or of the opposite vertices  $$ (4,0),\;(5,-5) $$

    Midpoint of two points $$ { (x }_{ 1 },{ y }_{ 1 }) $$ and $$ { (x }_{ 2 },{ y }_{

    2 }) $$ is  calculated by the formula $$\displaystyle \left( \frac { { x }_{ 1 }+{x}_{ 2 } }{ 2 } ,\frac { { y }_{ 1 }+y_{ 2 } }{ 2 }  \right) .$$

    Using this formula, mid point of $$\displaystyle  (3, -2) , (6, -3)$$ will be,
    $$\Rightarrow \displaystyle \left( \frac { 3+6 }{ 2 } ,\frac { -2-3 }{ 2 }  \right)$$
    $$\displaystyle \Rightarrow \left( \frac { 9 }{ 2 } ,-\frac { 5 }{ 2 }  \right) $$

  • Question 5
    1 / -0
    The coordinates of the points which divides the join of $$(-2, -2)$$ and $$(-5,7)$$ in the ratio $$2:1$$ is:
    Solution

    Using the section formula, if a point $$(x,y)$$ divides the line joining the points $$({ x }_{ 1 },{ y }_{ 1 })$$ and $$({ x }_{ 2 },{ y}_{ 2 })$$ in the ratio $$ m:n $$, then $$(x,y) = \left( \dfrac { m{ x }_{ 2} + n{ x }_{ 1 } }{ m + n } ,\dfrac { m{ y }_{ 2 }  + n{ y }_{ 1 } }{ m + n } \right) $$

    Substituting $$({ x }_{ 1 },{ y }_{ 1 }) = (-2,-2), $$  $$({x }_{ 2 },{ y }_{

    2 }) = (-5,7) $$  and $$ m = 2, n = 1 $$ in the section formula, we get the point 

    $$ \left( \dfrac { 2(-5)  + 1(-2) }{ 2 +1 } ,\dfrac { 2(7) + 1(-2) }{ 2 + 1 } \right) =\left( -4,4 \right) $$

  • Question 6
    1 / -0
    Mid-point of the line-segment joining the points $$(-5,4)$$ and $$(9, -8)$$ is:
    Solution
    Midpoint of two points $$ { (x }_{ 1 },{ y }_{ 1 }) $$ and $$ { (x }_{ 2 },{ y }_{
    2 }) $$ is calculated by the formula $$ \left( \cfrac { { x }_{ 1 }+{ x}_{ 2 } }{ 2 } ,\cfrac { { y }_{ 1 }+y_{ 2 } }{ 2 }  \right) $$
    Using this formula, mid - point of the line-segment joining the points $$(5,4)$$ and $$(9,8)$$ is: $$= \left( \cfrac { -5 + 9 }{ 2 } ,\cfrac { 4- 8 }{ 2 }  \right)  = (2,-2) $$
  • Question 7
    1 / -0
    Find the area of the triangle formed by joining the midpoints of the sides of the triangle whose vertices are $$(2,2)$$, $$(4,4)$$ and $$(2,6)$$.
    Solution
    Let $$ A(2,2), B(4,4) $$ and $$ C(2,6) $$ be the vertices of a given triangle ABC.

    Let D, E, and F be the midpoints of AB, BC and CA respectively.

    Mid point of two points $$ { (x }_{ 1 },{ y }_{ 1 }) $$ and $$ { (x }_{ 2 },{ y }_{

    2 }) $$ is  calculated by the formula $$ \left( \dfrac { { x }_{ 1 }+{ x

    }_{ 2 } }{ 2 } ,\dfrac { { y }_{ 1 }+y_{ 2 } }{ 2 }  \right) $$

    Using this formula,
    the coordinates of D, E, and F are given as $$\displaystyle  D \left (\frac{2+4}{2},\frac {2+4}{2} \right ), E\left (\frac {4+2}{2},\frac {4+6}{2}\right ) $$ and $$ F\left (\dfrac {2+2}{2},\dfrac {2+6}{2} \right ) $$

    i.e., $$ D(3,3), E(3,5) and F(2,4)  $$

    Area of a triangle with vertices $$({ x }_{ 1 },{ y }_{ 1 })$$ ; $$({ x }_{ 2 },{ y

    }_{ 2 })$$  and $$({ x }_{ 3 },{ y }_{ 3 })$$  is $$ \left| \dfrac { {

    x }_{ 1 }({ y }_{ 2 }-{ y }_{ 3 })+{ x }_{ 2 }({ y }_{ 3 }-{ y }_{ 1 })+{ x }_{

    3 }({ y }_{ 1 }-{ y }_{ 2 }) }{ 2 }  \right| $$

    Hence, substituting the points $$({ x }_{ 1 },{ y }_{ 1 }) = (3,3) $$ ; $$({ x

    }_{ 2 },{ y }_{ 2 }) = (3,5) $$  and $$({ x }_{ 3 },{ y }_{ 3 }) = (2,4)$$

    in the area formula, we get

    Area of triangle DEF  $$ = \left| \dfrac { 3(5-4)+(3)(4-3)+2(3-5) }{ 2

    }  \right|  = \left| \dfrac { 3 +3 -4 }{ 2 }  \right|  =

    \dfrac {2}{2}  = 1 \ sq \ units $$
  • Question 8
    1 / -0
    Three consecutive vertices of a parallelogram are $$(1, -2)$$, $$(3,6)$$ and $$(5,10)$$. The coordinates of the fourth vertex are:
    Solution

    Let $$ABCD$$ be the parallelogram, having three consecutive vertices as $$A(1,-2),\ B(3,6)$$ and $$C(5,10)$$.

    Also, let the fourth vertex be $$  D(x,y) $$

    We know that, the diagonals of a parallelogram bisect each other. 

    So, the midpoint of $$AC$$ is same as the midpoint of $$BD$$.

    We also know that, the coordinates of the midpoint of the line segment joining $$(x_1,y_1) \ and\ (x_2,y_2)$$ are: 


    $$P(x,y)=\left(\dfrac{x_1+x_2}{2}, \dfrac{y_1+y_2}{2}\right)$$


    So, midpoint of $$ AC = $$ Midpoint of $$ BD $$

    $$ \Rightarrow \left( \dfrac { 1+5 }{ 2 } ,\dfrac { -2+10 }{ 2 }  \right) =

    \left( \dfrac { 3+x }{ 2 } ,\dfrac { 6 +y }{ 2 }  \right)$$

    $$ \Rightarrow \left( \dfrac { 6 }{ 2 } ,\dfrac { 8 }{ 2 }   \right) =

    \left( \dfrac { 3+x }{ 2 } ,\dfrac { 6 +y }{ 2 }  \right) $$

    $$ \Rightarrow 3+x=6 ; \quad 6 + y = 8 $$

    $$ \Rightarrow x = 3;\quad  y = 2 $$

    $$ = (3,2) $$


    Hence, the coordinates of the fourth vertex are $$(3,2)$$.

  • Question 9
    1 / -0
    Find the coordinates of the point which divides the line segment joining the points $$A(4, -3)$$ and $$B(9,7)$$ in the ratio $$3:2$$
  • Question 10
    1 / -0
    The coordinates of A and B are $$(1,2)$$ and $$(2,3)$$ respectively. Find the coordinates of R on the line segment AB so that $$\dfrac { AR }{ RB }=\dfrac { 4 }{ 3 }$$.
    Solution

    Using the section formula, if a point $$(x,y)$$ divides the
    line joining the points $$({ x }_{ 1 },{ y }_{ 1 })$$ and $$({ x }_{ 2 },{ y

    }_{ 2 })$$ in the ratio $$ m:n $$, then $$(x,y) = \left( \dfrac { m{ x }_{ 2

    }+n{ x }_{ 1 } }{ m+n } ,\dfrac { m{ y }{ 2 }+n{ y }_{ 1 } }{ m+n } 

    \right) $$
    Substituting $$({ x }_{ 1 },{ y }_{ 1 }) = (1,2) $$ and $$({x }_{ 2 },{ y }_{

    2 }) = (2,3) $$  and $$ m = 4, n = 3 $$ in the section formula, we get

    $$ R = \left( \dfrac { 4(2) + 3(1) }{ 4 + 3 } ,\dfrac { 4(3) +3(2) }{ 4 + 3 } 

    \right) =\left( \dfrac { 11}{7}, \dfrac {18}{7} \right) $$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now