Self Studies

Coordinate Geometry Test - 28

Result Self Studies

Coordinate Geometry Test - 28
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the area of the triangle whose vertices are $$(a, b + c), (a, b - c)$$ and $$(-a, c)$$.
    Solution
    Area of a triangle $$ (A) =\left| \cfrac { {x }_{ 1 }({ y }_{ 2 }-{ y }_{ 3 })+{ x }_{ 2 }({ y }_{ 3 }-{ y }_{ 1 })+{ x }_{3 }({ y }_{ 1 }-{ y }_{ 2 }) }{ 2 }  \right| $$

    Hence, substituting the points $$({ x }_{ 1 },{ y }_{ 1 }) = (a,b+c) $$ , $$({ x }_{ 2

    },{ y }_{ 2 }) = (a,b-c) $$  and $$({ x }_{ 3 },{ y }_{ 3 }) = (-a,c) $$ 

    $$ A=\left| \cfrac { a(b-c-c)+a(c-b-c)-a(b+c-b+c) }{ 2 }  \right| $$
    $$=\left| \cfrac { a(b-2c)+a(-b)-a(2c) }{ 2 }  \right|$$
    $$ =\left| \cfrac { ab-2ac-ab-2ac }{ 2 }  \right| $$
    $$=\left| \cfrac { -4ac }{ 2 }  \right| $$
    $$=2ac$$  square units 
  • Question 2
    1 / -0
    The area of the triangle whose vertices are $$A(1,1), B(7, 3)$$ and $$C(12, 2)$$ is
    Solution
    We know that the area of the triangle whose vertices are $$\displaystyle (x_{1},y_{1}),(x_{2},y_{2}),$$ and $$(x_{3},y_{3})$$ is $$\cfrac{1}{2}\left | x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1}) +x_{3}(y_{1}-y_{2})\right |$$
    $$\therefore$$
    Area $$= \dfrac{1}{2} [1(1)+ 7(1)+ 12(-2)] = -8$$, but area can not be negative
    Hence, area = 8 square units.
  • Question 3
    1 / -0
    The mid-point of the line segment joining $$( 2a, 4)$$ and $$(-2, 2b)$$ is $$(1, 2a + 1 )$$. The values of $$a$$ and $$b$$ are 
    Solution
    Midpoint of two points $$ =\left( \cfrac { { x }_{ 1 }+{ x}_{ 2 } }{ 2 } ,\cfrac { { y }_{ 1 }+y_{ 2 } }{ 2 }  \right) $$
    Given, midpoint of $$ (2a,4) $$ and $$ (-2,2b) = (1,2a+1) $$
    $$ => \left(\cfrac { 2a-2 }{ 2 } ,\cfrac { 4+2b }{ 2 }\right)= (1,2a+1) $$
    $$ => \cfrac { 2a-2 }{ 2 } = 1 ; \cfrac { 4+2b }{ 2 } = 2a + 1 $$
    $$ => 2a -2 = 2 $$
    $$=> a = 2 $$

    And, $$ \cfrac { 4+2b }{ 2 } = 2a + 1 $$
    $$=> \cfrac { 4+2b }{ 2 } = 2(2) + 1 = 5 $$
    $$ => 4 + 2b = 10 $$
    $$ => 2b = 6 $$
    $$=> b = 3 $$
  • Question 4
    1 / -0
    Find the co ordinates of the point which divides the line segment joining the points (6, 3) and (-4, 5) in the ratio 3 : 2 internally
    Solution
    Let $$P(x, y)$$ be the point which divides the line segment $$AB$$ in the ratio 3:2 internally

    $$ We\quad know\quad that\quad if\quad a\quad point\quad P\left( x,y \right) \quad divides\quad the\quad line\quad segment\quad AB\quad \\ joining\quad the\quad points\quad A\left( { x }_{ 1 },{ y }_{ 1 } \right) \quad \& \quad B\left( { x }_{ 2 },{ y }_{ 2 } \right) \quad in\quad the\quad ratio\quad m:n\\ then,\quad by\quad the\quad section\quad formula,\quad $$
      

    $$\Rightarrow$$  $$P=\left(\dfrac{mx_2+nx_1}{m+n},\,\dfrac{my_2+n_1}{m+n}\right)$$

               $$=\left(\dfrac{(3)(-4)+(2)(6)}{3+2},\,\dfrac{(3)(5)+(2)(3)}{3+2}\right)$$

               $$=\left(0,\dfrac{21}{5}\right)$$
    .

  • Question 5
    1 / -0
    $$(3, 1), (-3, 2)$$ and $$\displaystyle (0,2-\sqrt{3})$$ are the vertices of __________ triangle of area ___________.
    Solution

    Distance between two points $$= \sqrt { \left( { x }_{ 2 }-{x }_{ 1 } \right) ^{ 2 }+\left( { y }_{ 2 }-{ y }_{ 1 } \right) ^{ 2 } } $$
    Distance between the points $$A (3,1) $$ and $$B (-3,2) = \sqrt { \left( -3-3 \right) ^{ 2 }+\left( 2 - 1 \right) ^{ 2 } } = \sqrt { 36 + 1 } = \sqrt { 37 }$$

    Distance between the points $$B(-3,2) $$ and $$C (0,2-\sqrt {3}) = \sqrt { \left( 0 + 3 \right) ^{ 2 }+\left(2 - \sqrt {3} - 2\right) ^{ 2 } } = \sqrt { 9 + 3 } = \sqrt { 12 } $$

    Distance between the points $$A(3,1) $$ and $$ C(0,2-\sqrt {3})$$

    $$ = \sqrt { \left( 0-3\right) ^{ 2 }+\left( 2-\sqrt {3} - 1\right) ^{ 2 } } = \sqrt { 9 + 1 + 3 -2\sqrt {3} } = \sqrt { 13 - 2\sqrt {3} } $$

    Since the length of the sides between all vertices are different, they are the vertices of  a scalene triangle. 

    Area of a triangle $$= \left| \cfrac { {x }_{ 1 }({ y }_{ 2 }-{ y }_{ 3 })+{ x }_{ 2 }({ y }_{ 3 }-{ y }_{ 1 })+{ x }_{3 }({ y }_{ 1 }-{ y }_{ 2 }) }{ 2 }  \right| $$

    Area of $$\triangle ABC= \left| \cfrac {  (3)(2-2+\sqrt {3})+(-3)(2-\sqrt {3} - 1)+0(1-2) }{ 2 } \right| $$

    $$ = \left| \cfrac { 3\sqrt {3} -3 + 3\sqrt {3} }{ 2 }  \right| $$

    $$ = \cfrac{-3 + 6 \sqrt {3}}{2}$$ sq. units

  • Question 6
    1 / -0
    Three points A, B and C have coordinates $$(a, b + c), \ (b, c + a)$$ and $$(c, a + b)$$, respectively. The area of the triangle ABC will be:
    Solution
    Area of triangle $$=\dfrac{ 1 }{ 2 }\left[ { x }_{ 1 }({ y }_{ 2 }-{ y }_{ 3 })+{ x }_{ 2 }({ y }_{ 3 }-{ y }_{ 1 })+{ x }_{ 3 }({ y }_{ 1 }-{ y }_{ 2 }) \right] $$

    Given the points: $$A(a, b+c) , B(b, c+a) , C(c, a+b)$$
    Therefore, area:

    $$A =\dfrac{ 1 }{ 2 }\left[ a(c+a-a-b)+b(a+b-b-c)+c(b+c-c-a) \right]$$ 

    $$A =\dfrac{ 1 }{ 2}{\left[ a(c-b)+b(a-c)+c(b-a) \right]  }$$

    $$A=\dfrac{ 1 }{ 2}{\left[ ac-ab+ba-bc+cb-ac \right]  }=0$$
  • Question 7
    1 / -0
    If the coordinates of two points A and B are $$(3, 4)$$ and $$(5, -2)$$, respectively, then the coordinates of any point P if $$PA = PB$$ and area of $$\displaystyle \Delta PAB=10$$ is
    Solution
    Let P $$ = (x, y) $$
    Given, $$ PA = PB $$
    $$=> {PA}^{2} = {PB}^{2} $$
    $$ => {(x-3)}^{2} + {(y-4)}^{2} = {(x-5)}^{2} + {(y+2)}^{2} $$
    $$=>  {x} ^{2} -6x + 9 + {y} ^{2} -8y + 16 = {x}^{2} -10x + 25 + {y}^{2} + 4y + 4 $$
    $$=>  4x - 12y = 4 $$
    $$=> x - 3y = 1 $$                      .......(i)

    Also, Area of $$ \Delta PAB=10 $$
    $$\left| \cfrac {x (4+2)+3(-2-y)+5(y-4)}{ 2 } \right|=10 $$
    $$ \left| \cfrac { 6x -6-2y +5y -20 }{ 2 } \right|  = 10 $$
    $$ \cfrac {6x+3y -26}{2}  = \pm 10 $$

    $$ 6x+2y-26= \pm 20 $$
    $$ 6x+2y = 46  $$                     ........(ii)
    or $$ 6x + 2y = 6 $$                                  .......(iii)
    Solving equation (i) and (ii), we get $$ x = 7, y = 2 $$ 
    Solving equation (i) and (iii), we get $$ x = 1, y = 0 $$.
    So, the co-ordinates of P are $$ (7, 2)$$ or $$(1, 0) $$.
  • Question 8
    1 / -0
    Find the co-ordinates of the point dividing the joining of line segment $$A(1, -2)$$ and $$B(4, 7)$$ which divides $$AB$$ internally in the ratio $$1 : 2.$$
    Solution
    The given points are $$A(1,-2)$$ and $$B(4,7)$$. 
    We have to find the coordinate of points which divide the line segment internally in the ratio $$1:2$$
    Let the point $$C$$ divides the line segment $$AB$$ in the ratio $$1:2$$

    $$ We\quad know\quad that\quad if\quad a\quad point\quad C\left( x,y \right) \quad divides\quad the\quad line\quad segment\quad AB\quad \\ joining\quad the\quad points\quad A\left( { x }_{ 1 },{ y }_{ 1 } \right) \quad \& \quad B\left( { x }_{ 2 },{ y }_{ 2 } \right) \quad in\quad the\quad ratio\quad m:n\\ then,\quad by\quad the\quad section\quad formula,\quad $$
      

    $$\Rightarrow$$  $$C=\left(\dfrac{mx_2+nx_1}{m+n},\,\dfrac{my_2+n_1}{m+n}\right)$$

               $$=\left(\dfrac{(1)(4)+(2)(1)}{1+2},\,\dfrac{(1)(7)+(2)(-2)}{1+2}\right)$$

               $$=\left(\dfrac{6}{3},\dfrac{3}{3}\right)$$

               $$=(2,1)$$

  • Question 9
    1 / -0
    The  triangle with vertices A(4, 4), B(-2, -6) and C(4, -1) is shown in the diagram. The area of $$\Delta$$ ABC is _______

    Solution
    We know that the area of the triangle whose vertices are $$\displaystyle (x_{1},y_{1}),(x_{2},y_{2}),$$ and $$(x_{3},y_{3})$$ is $$= \cfrac{1}{2}\left | x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1}) +x_{3}(y_{1}-y_{2})\right |$$

    $$=\dfrac{1}{2}|4(-6-(-1))-2(-1-4)+4(4-(-6))|$$

    $$=\dfrac{1}{2}|4(-5)-2(-5)+4(10)|$$

    $$=\dfrac{1}{2}|30|$$

    $$=15 $$ sq. units

  • Question 10
    1 / -0
    The coordinates of the points P and Q are respectively (4, - 3) and (-1, 7) Then the abscissa of a point R on the line segment PQ such that $$\displaystyle \frac{PR}{PQ}=\frac{3}{5}$$ is 
    Solution

    Using the section formula, if a point $$(x,y)$$ divides the line joining the

    points $$({ x }_{ 1 },{ y }_{ 1 })$$ and $$({ x }_{ 2 },{ y }_{ 2 })$$ internally

    in the ratio $$ m:n $$, then $$(x,y) = \left( \frac { m{ x }_{ 2 } + n{ x }_{ 1

    } }{ m + n } ,\frac { m{ y }_{ 2 }  + n{ y }_{ 1 } }{ m + n } 

    \right) $$





    Substituting $$({ x }_{ 1 },{ y }_{ 1 }) = (4,-3) $$ and $$({x }_{ 2 },{ y }_{

    2 }) = (-1,7) $$  and $$ m = 3, n = 2 $$ in the section formula, we get

    the abscissa of the point $$ ( \frac { 3(-1)  + 2(4) }{ 3+2 }) =1 $$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now