Self Studies

Introduction to Trigonometry Test - 52

Result Self Studies

Introduction to Trigonometry Test - 52
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In right angle $$\triangle ABC,   \angle B=90^o,   \angle A=45^o$$, then $$\sin { 45^o } =$$
    Solution

    Given $$\angle A=45^o, \angle B=90^o$$
    $$\therefore \angle C=90^o$$

    $$\angle A = \angle C \Rightarrow AB = BC = a$$

    $$AC = \sqrt{{AB}^{2}+{BC}^{2}} = \sqrt{{a}^{2}+{a}^{2}} = \sqrt{2{a}^{2}} = \sqrt{2} a$$

    $$\sin{45^o} = \dfrac{BC}{AC} = \dfrac{a}{\sqrt{2}a} = \dfrac{1}{\sqrt{2}}$$

    So, $$\dfrac{1}{\sqrt{2}}$$ is correct.

  • Question 2
    1 / -0
    In right angle $$\triangle ABC,   \angle B=90^o,   \angle A=45^o$$, then $$\tan { 45^o } =$$
    Solution
    $$\angle A = \angle C \Rightarrow AB = BC = a$$

    So $$AC = \sqrt{{AB}^{2}+{BC}^{2}} = \sqrt{{a}^{2}+{a}^{2}} = \sqrt{2{a}^{2}} = \sqrt{2} a$$

    $$\tan{45} = \dfrac{BC}{AB} = \dfrac{a}{a} =1$$

    So $$1$$ is correct.

  • Question 3
    1 / -0
    In right angle $$\triangle ABC,   \angle B=90^o,   \angle A=45^o=\angle C$$, then $$\sec { 45^o} =$$

    Solution
    $$\angle A = \angle C \Rightarrow AB = BC = a$$

    $$AC = \sqrt{{AB}^{2}+{BC}^{2}} = \sqrt{{a}^{2}+{a}^{2}} = \sqrt{2{a}^{2}} = \sqrt{2} a$$

    $$\sec{45^o} = \dfrac{hypotenuse}{base} =\dfrac{AC}{AB}= \dfrac{\sqrt2a}{a} = \sqrt{2}$$
    So, $$\sqrt{2}$$ is correct.
  • Question 4
    1 / -0
    In right angled $$\triangle ABD,   \angle B=60^o,   \angle A=30^o$$.
    Then $$\sec { 30^o}$$ is equal to

    Solution
    Consider an equilateral $$\triangle ABC$$, with each side $$= 2a$$.

    So, each angle is $$60^o$$. 
    From $$A$$, draw $$AD \perp BC$$.

    So, $$BD=DC=a,   \angle BAD=30^o$$ and $$\angle ADB=90^o$$.

    So, for right angled $$\triangle ADB$$, we have 
    $$AD=\sqrt { { AB }^{ 2 }-{ BD }^{ 2 } } =\sqrt { { \left( 2a \right)  }^{ 2 }-{ a }^{ 2 } } =\sqrt { { 4a }^{ 2 }-{ a }^{ 2 } } =\sqrt { { 3a }^{ 2 } } =\sqrt { 3 } a$$.

    $$\sec { 30^o } =\dfrac { 1 }{ \cos { 30^o }  } =\dfrac { 1 }{ \dfrac { \sqrt { 3 }  }{ 2 }  } =\dfrac{AB}{AD}=\dfrac { 2 }{ \sqrt { 3 }  }$$.
    So $$ \dfrac { 2 }{ \sqrt { 3 }  } $$ is correct.

  • Question 5
    1 / -0
    In right angle $$\triangle ABD,   \angle B={ 60 }^{ o  },   \angle A={ 30 }^{ o  }$$, then $$\cot { { 60 }^{ o  } } =$$

    Solution
    in $$\triangle ABD$$
    $$\cot60^o=\cot B=\dfrac{base}{perpendicular}=\dfrac{a}{\sqrt3a}=\dfrac{1}{\sqrt3}$$

    Therefore, Answer is $$\dfrac{1}{\sqrt3}$$
  • Question 6
    1 / -0
    In $$\triangle ABC,   \angle B=90^o,   AB=3\   cm,   AC=6\   cm,   \angle A=$$

    Solution
    $$\sin{C} = \dfrac{AB}{AC} = \dfrac{3}{6} = \dfrac{1}{2}$$

    But $$\sin{30^o} = \dfrac{1}{2}$$,  so, $$\angle C = 30^o$$

    $$\angle A = \left(90-\angle C\right)^o = \left(90-30\right)^o = 60^o$$.

    So $$60^o$$ is correct.
  • Question 7
    1 / -0
    In right angle $$\triangle ABC,   \angle B=90^o,   \angle A=45^o$$, then $$\cos { 45^o } =$$
    Solution
    Given $$\angle A=45^o, \angle B=90^o$$
    $$\therefore \angle C=45^o$$

    $$\angle A = \angle C \Rightarrow AB = BC $$

    Let $$AB=BC=a$$

    $$AC = \sqrt{{AB}^{2}+{BC}^{2}} = \sqrt{{a}^{2}+{a}^{2}} = \sqrt{2{a}^{2}} = \sqrt{2} a$$

    $$\cos{45} = \dfrac{AB}{AC} = \dfrac{a}{\sqrt{2}a} = \dfrac{1}{\sqrt{2}}$$

    So $$\dfrac{1}{\sqrt{2}}$$ is correct.

  • Question 8
    1 / -0
    In $$\triangle ABC,   \angle B=90^o,   \angle A=30^o,   AB =9  cm\ $$, then $$BC =$$
    Solution
    $$\tan{30^0} = \dfrac{BC}{AB}$$ and $$\tan{30^0} = \dfrac{1}{\sqrt{3}}$$

    $$\therefore    \dfrac{BC}{9} = \dfrac{1}{\sqrt{3}}$$, so $$BC = \dfrac{9}{\sqrt{3}} = 3\sqrt{3}$$.

    So, $$3\sqrt{3}$$ is correct. 
  • Question 9
    1 / -0
    Value of $$\left(\sin{60^o}\cos{30^o}-\cos{60^o}\sin{30^o}\right)$$ is 
    Solution
    Given that: $$\left( \sin { 60^o } \cos { 30^o } -\cos { 60^o } \sin { 30^o }  \right) $$

     $$=\left( \dfrac { \sqrt { 3 }  }{ 2 } \times \dfrac { \sqrt { 3 }  }{ 2 } -\dfrac { 1 }{ 2 } \times \dfrac { 1 }{ 2 }  \right) $$

     $$=\left( \dfrac { 3 }{ 4 } -\dfrac { 1 }{ 4 }  \right) $$

     $$=\dfrac { 2 }{ 4 } =\dfrac { 1 }{ 2 } $$
  • Question 10
    1 / -0
    Value of $$\left(\tan{30^0}\csc{60^0} + \tan{60^0}\sec{30^0}\right)$$ is 
    Solution
    Taking 
    $$\left( \tan { 30^0 } \csc { 60^0+\tan { 60^0 } \sec { 30^0 }  }  \right) $$
    Substituting the values of tan  $$30^0$$ ,csc $$60^0$$, tan $$60^0$$,sec $$30^0$$
     $$=\left( \dfrac { 1 }{ \sqrt { 3 }  } \times \dfrac { 2 }{ \sqrt { 3 }  }  \right) +\left( \sqrt { 3 } \times \dfrac { 2 }{ \sqrt { 3 }  }  \right) $$
     $$=\dfrac { 2 }{ 3 } +2$$      taking L.CM we get
    $$=2\dfrac { 2 }{ 3 } $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now