Self Studies
Selfstudy
Selfstudy

Relations Test 32

Result Self Studies

Relations Test 32
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let $$R$$ be a relation on $$N$$ defined by $$x+2y=8$$. The domain of $$R$$ is
    Solution
    R is Relation 
    $$ R = (x,y) $$ 
    $$ x+2y = 8 $$
    $$ R = \left \{ (6,1);(4,2);(2,3) \right \} $$
    $$ \therefore $$ Domain of set 
    $$ = \left \{ 6,4,2 \right \} $$

  • Question 2
    1 / -0
    Let $$A\equiv \left\{1,2,3,4\right\},\ B\equiv \left\{a,b,c\right\}$$, then number of function from $$A\rightarrow B$$, which are not onto is
    Solution
    $$A \equiv\{1,2,3,4\} \\$$
    $$B \equiv\{a, b, c\}$$
    Total function $$(A \rightarrow B)$$

    $$\text { Total onto function }(A \rightarrow B)$$

    $$=4 c_{3} \times 3 ! \times 3$$
    $$=\frac{4 !}{3 ! 1 !} \times 3 ! \times 3$$
    $$=41 \times 3=72$$
    Hence, no. of $$f^{n}$$ which are not onto
    $$=81-72 \\$$
    $$=9$$

  • Question 3
    1 / -0
    If domain of $$y = f\left( x \right)$$ is $$ \left[ { - 3,\,\,2} \right]$$ then domain of $$y = f\left( {\left| {\left[ x \right]} \right|} \right)$$ is
    Solution

  • Question 4
    1 / -0
    Let  $$R = \{ ( 3,3 ) , ( 6,6 ) , ( 9,9 ) , ( 6,12 ) , ( 3,9 ) , ( 3,12 ) , ( 3,6 ) \}$$  be a relation on the set  $$A=\{ 3,6,9,12\} .$$  Then the relation  $$R ^ { - 1 }$$  is
    Solution
    $$\begin{array}{l} We\, have \\ R=\left\{ { \left( { 3,3 } \right) ,\left( { 6,6 } \right) \left( { 9,9 } \right) \left( { 12,12 } \right) ,\, \left( { 6,12 } \right) ,\left( { 3,12 } \right) ,\, \left( { 3,6 } \right)  } \right\}  \\ and, \\ A=\left\{ { 3,6,9,12 } \right\}  \\ Then \\ The\, relation\, is\, reflexive\, and\, transitive\, only.\, because \\ \left\{ { \left( { 3,3 } \right) ,\left( { 6,6 } \right) \left( { 9,9 } \right) \left( { 12,12 } \right)  } \right\} \, \, it\, \, is\, { { Re } }flexive \\ and,\, \left( { 6,12 } \right) ,\left( { 3,12 } \right) ,\, \left( { 3,6 } \right) \left[ { it\, is\, transitive. } \right]  \\  \end{array}$$
    Hence, option $$A$$ is the correct answer.
  • Question 5
    1 / -0
    Consider the following relations :-
    $$R=\{ (x,y):x,y$$  are real numbers and  $$x =w y$$  for some rational number  $$w \}$$ :
    $$S = \{ \left( \dfrac { m } { n } , \dfrac { p } { q } \right) : m , n , p$$  and  $$q$$  are integers such that   $${ n },{ q } \neq 0$$  and  $${ qm }={ pn }\}.$$   Then :
    Solution
    R: $$x=w y$$ for a function to be a reflexive function
    $$ (a, a) \in R \quad \Rightarrow \quad a=\omega a $$
    $$w=1$$ (only) $$\therefore R$$ is not a reflexive function.
    $$ \begin{aligned} S:\left\{\left(\frac{m}{n}, \frac{p}{q}\right)\right.& m q=n p \\ \Rightarrow \frac{q}{n} &=\frac{p}{m} \Rightarrow \frac{m}{n}=\frac{p}{q} \end{aligned} $$

    If $$\left(\frac{a}{b}, \frac{a}{b}\right) \in S$$, then $$S$$ will be reflexive function If $$S \in\left(\frac{a}{b}, \frac{c}{d}\right)$$ and $$\in\left(\frac{c}{d}, \frac{a}{b}\right) \Rightarrow S$$ is symmetric for a function to be transitive,


    $$ \begin{aligned} S \in\left(\frac{1}{2}, \frac{2}{4}\right), & S \in\left(\frac{2}{4}, \frac{4}{8}\right) \\ s \in(a, b), S \in(b, c) & \Rightarrow S \in(a, c) \\ \therefore \frac{1}{2}=\frac{4}{8}=\frac{1}{2} \quad & \Rightarrow S \in\left(\frac{1}{2}, \frac{4}{8}\right) \\ & \therefore \text { S is transitive } \end{aligned} $$



    $$ \begin{array}{l} \text { Hence, } S \text { is an equivalence relation. } \\ \Rightarrow \text { (c) is the correct option } \end{array} $$
  • Question 6
    1 / -0
    If $$A=\left\{1,2,3\right\}$$, the number of symmetric relation in $$A$$ is
    Solution

  • Question 7
    1 / -0
    If $$A=\left\{ 2,3,5 \right\} ,B=\left\{ 4,6,8 \right\} $$, then the relation from $$A$$ into $$B$$ is 
  • Question 8
    1 / -0
    If A= {a, b} then possible number of relation on the set A.
    Solution

  • Question 9
    1 / -0
    If n(A)=4, n(B)=3, $$n(A\times B\times C)=24,then\quad n(C)$$ is equal to 
    Solution
    $$n\left(A\right)=4\,\,n\left(B\right)=3\,\,n\left(A\times B\times C\right)=24$$
    We have $$n\left(A\times B\times C\right)=n\left(A\right)\times n\left(B\right)\times n\left(C\right)$$
    $$\Rightarrow 24=4\times 3\times n\left(C\right)$$
    $$\therefore n\left(C\right)=\dfrac{24}{12}=2$$

  • Question 10
    1 / -0
    If a set $$A$$ has $$n$$ elements then the number of relations defined on $$A$$ is 
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now