Self Studies

Limits and Continuity Test 27

Result Self Studies

Limits and Continuity Test 27
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\underset { x\rightarrow 0 }{ lim } \frac { tan(sinx)-x }{ { tanx }^{ 3 } } $$ is equal to 
  • Question 2
    1 / -0
    The value of $$\displaystyle n\xrightarrow { lim } \infty\frac{1.n+2.(n-1)+3.(n-2)+...+n.1}{{1}^{2}+{2}^{2}+...+{n}^{2}}$$ is
    Solution
    Now,
    $$1.n+2(n-1)+3.(n-2)+....+n.1$$
    The general term of the above series is
    $${ T }_{ r }=r(n-r+1)=r(n+1-r)$$
    Sum of series$$=S=\sum _{ r=1 }^{ n }{ { T }_{ r } } =\sum _{ r=1 }^{ n }{ r(n+1-r) } $$
    $$S=\sum _{ r=1 }^{ n }{ nr } +\sum _{ r=1 }^{ n }{ r } -\sum _{ r=1 }^{ n }{ { r }^{ 2 } } \\ =n\sum _{ r=1 }^{ n }{ r } +\sum _{ r=1 }^{ n }{ r } -\sum _{ r=1 }^{ n }{ { r }^{ 2 } } \\ =n\cfrac { n(n+1) }{ 2 } +\cfrac { n(n+1) }{ 2 } -\cfrac { n(n+1)(2n+1) }{ 6 } $$
    Similarly, $${ 1 }^{ 2 }+{ 2 }^{ 2 }+{ 3 }^{ 2 }+.....+{ n }^{ 2 }=\cfrac { n(n+1)(2n+1) }{ 6 } $$
    $$\lim _{ n\rightarrow \infty  }{ \cfrac { 1.n+2(n-1)+3.(n-2)+...+n.1 }{ { 1 }^{ 2 }+{ 2 }^{ 2 }+{ 3 }^{ 2 }+........{ n }^{ 2 } }  } \\ \lim _{ n\rightarrow \infty  }{ \cfrac { \cfrac { { n }^{ 2 }(n+1) }{ 2 } +\cfrac { n(n+1) }{ 2 } -\cfrac { n(n+1)(2n+1) }{ 6 }  }{ \cfrac { n(n+1)(2n+1) }{ 6 }  }  } \\ \lim _{ n\rightarrow \infty  }{ \cfrac { \cfrac { n }{ 2 } +\cfrac { 1 }{ 2 } -\cfrac { 2n+1 }{ 6 }  }{ \cfrac { 2n+1 }{ 6 }  }  } \\ \lim _{ n\rightarrow \infty  }{ (\cfrac { 3n+3-2n-1 }{ 2n+1 } ) } =\lim _{ n\rightarrow \infty  }{ (\cfrac { 3+\cfrac { 3 }{ n } -2-\cfrac { 1 }{ n }  }{ 2+\cfrac { 1 }{ n }  } ) } \\ =\cfrac { 3-2 }{ 2 } =\cfrac { 1 }{ 2 } $$
  • Question 3
    1 / -0
    The value of $$\displaystyle \lim _{ x\rightarrow 0 } \dfrac{1+\sin{x}-\cos{x}+\log{(1-x)}}{x^{3}}$$, is
    Solution

  • Question 4
    1 / -0
    If $$ \mathrm { L } = \lim _ { \mathrm { x } ^ { 2 } \rightarrow \mathrm { a } } \frac { \mathrm { b } - \cos \left( \mathrm { x } ^ { 2 } - \mathrm { a } \right) } { \left( \mathrm { x } ^ { 2 } - \mathrm { a } \right) \sin \left( \mathrm { cx } ^ { 2 } - \mathrm { a } \right) } $$ is non-
    zero finite $$ ( \mathrm { a } > 0 ) , $$ then-
  • Question 5
    1 / -0
    The value of $$\displaystyle \lim_{\theta \rightarrow 0^{+}} \dfrac {\sin \sqrt {\theta}}{\sqrt {\sin  \theta}}$$ is equal to
    Solution

  • Question 6
    1 / -0
    The value of $$\displaystyle \lim_{x\rightarrow 0}\dfrac {\sqrt {1-\cos 2x}}{x}$$ equals
    Solution

  • Question 7
    1 / -0
    Let $$f:(0, \infty)\to R$$ be a differentiable function such that $$f'(x)=2-\dfrac{f(x)}{x}$$ for all $$x\in (0, \infty)$$ and $$f(1)\neq 1$$. Then 
    Solution
    Here, $$f'(x)=2-\dfrac{f(x)}{x}$$
    or $$\dfrac{dy}{dx}+\dfrac{y}{x}=2$$   [ i.e. linear differential equation in $$y$$]
    Integrating Factor, $$IF=e^{\displaystyle \int{\dfrac{1}{x}dx}}=e^{\log x}=x$$
    $$\therefore$$ Required solution is $$y.(IF)=\displaystyle \int{Q(IF)dx+C}$$
    $$\Rightarrow y(x)=\int{2(x)dx+C}$$
    $$\Rightarrow yx=x^2+C$$
    $$\therefore y=x+\dfrac{C}{x}$$   $$[ \because C \neq 0$$, as $$f(1) \neq 1]$$
    (a) $$\displaystyle \lim_{x \rightarrow 0^+}{f' \left( \dfrac{1}{x}\right)}=\displaystyle \lim_{x \rightarrow 0^+}{(1-Cx^2)}=1$$
    $$\therefore $$ Option (a) is correct.
    (b) $$\displaystyle \lim_{x \rightarrow 0^+}{xf \left( \dfrac{1}{x}\right)}=\displaystyle \lim_{x \rightarrow 0^+}{(1+Cx^2)}=1$$
    $$\therefore $$ Option (b) is correct.
    (c) $$\displaystyle \lim_{x \rightarrow 0^+}{x^2f' (x)}=\displaystyle \lim_{x \rightarrow 0^+}{(x^2-C)}=-C\neq 0$$
    $$\therefore $$ Option (c) is correct.
    (d) $$f(x)=x+\dfrac{C}{x}, C \neq 0$$
    For $$C > 0, \displaystyle \lim_{x\rightarrow 0^+}{f(x)=\infty}$$
    $$\therefore $$ Function is not bounded in $$(0, 2)$$.
    $$\therefore $$ Option (d) is incorrect.
  • Question 8
    1 / -0
    $$\displaystyle\lim_{x\rightarrow \dfrac{\pi}{2}}\dfrac{\cot x-\cos x}{(\pi -2x)^3}$$ equals?
    Solution

  • Question 9
    1 / -0
    For $$x>y$$, $$\displaystyle\lim_{x\rightarrow 0}{\left[\left(\sin{x}\right)^{1/x}+\left(\cfrac{1}{x}\right)^{\sin{x}}\right]}$$ is :
  • Question 10
    1 / -0
    If the function $$f(x)$$ satisfies the relation $$f(x+y)=y\dfrac{|x-1|}{(x-1)}f(x)+f(y)$$ with $$f(1)=2$$, then $$\displaystyle\lim_{x\rightarrow 1}f'(x)$$ is?
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now