Self Studies

Limits and Continuity Test 46

Result Self Studies

Limits and Continuity Test 46
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\displaystyle\lim _{ x\rightarrow 0 }{ \dfrac { { \left( \cos { x }  \right)  }^{ 1/2 }-{ \left( \cos { x }  \right)  }^{ 1/3 } }{ \sin ^{ 2 }{ x }  }  } $$ is $$
    Solution

  • Question 2
    1 / -0
    $$\displaystyle \lim _{ x\rightarrow 0 }{ \frac { x\left( { e }^{ \sin { x }  }-1 \right)  }{ 1-\cos { x }  }  } $$
    Solution

  • Question 3
    1 / -0
    $$\underset { x\rightarrow 0 }{ lim } (\cos  x+a\sin  b{ x) }^{ \frac { 1 }{ x }  }$$ is equal to 
    Solution

  • Question 4
    1 / -0
    $$\displaystyle \lim_{x\rightarrow 0}{\dfrac{x(1+a\cos x)-b\sin x}{x^{3}}}=1$$ then
    Solution

  • Question 5
    1 / -0
    The value of $$\displaystyle\lim_{\theta \rightarrow 0^+}\dfrac{\sin\sqrt{\theta}}{\sqrt{\sin\theta}}$$ is equal to?
    Solution

  • Question 6
    1 / -0
    $$\displaystyle\lim_{x\rightarrow 0}\left(\dfrac{1}{\sin^2x}-\dfrac{1}{\sin h^2x}\right)=?$$
    Solution

  • Question 7
    1 / -0
    Let $$f$$ : $$\left ( \dfrac{\pi}{2}, \dfrac{\pi}{2} \right )\rightarrow R$$ , $$f(x) = \left \{\begin{matrix} \lim_{n\rightarrow \infty }\dfrac{(tanx)^{2n} + x^2}{sin^2x + (tanx)^{2n}}; & x \neq 0 \\ 1; & x = 0 \end{matrix} \right., n \in N$$ . Which of the following holds good ?
  • Question 8
    1 / -0
    If $$ \lim _{x \rightarrow 0}\left(\cos x+a^{3} \sin \left(b^{6} x\right)\right)^{\frac{1}{x}}=e^{512} $$ then value of $$ab^2$$ is equal to
    Solution

  • Question 9
    1 / -0
    $$\displaystyle\lim_{x\rightarrow 0}\dfrac{\sin(\pi \cos^2x)}{x^2}$$ is equal to?
    Solution

  • Question 10
    1 / -0
    The value of $$\begin{matrix} lim \\ x\rightarrow y \end{matrix}\dfrac { { sin }^{ 2 }x-sin^{ 2 }y }{ { x }^{ 2 }-{ y }^{ 2 } } $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now