Self Studies

Limits and Continuity Test 58

Result Self Studies

Limits and Continuity Test 58
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    f(X)=|x|+|x-1| is continuous at 
    Solution
    $$\textbf{Step-1: Finding values of}$$ $$\mathbf{f(x)}$$
                    $$f(x)=|x|+|x-1|$$
                    $$f(x)=-x-|x-1|$$             $$\text{at}$$ $$x\leq{0}$$
                             $$=x-(x-1)$$                $$\text{at}$$ $$0\leq{x}<1$$
                             $$=x+(x-1)$$                $$\text{at}$$ $$x\geq{1}$$
                    $$\text{Hence, we get}$$
                    $$f(x)=1-2x$$             $$\text{at}$$ $$x\leq{0}$$
                             $$=1$$                       $$\text{at}$$ $$0\leq{x}<1$$
                             $$=2x-1$$             $$\text{at}$$ $$x\geq{1}$$
    $$\textbf{Step-2: Finding limits of the function at constraint values}$$
                     $$\text{At}$$ $$x=0,$$
                     $$\lim_{x\to 0} f(x)=1$$
                     $$\text{Hence,}$$ $$f(x)$$ $$\text{is continuous at}$$ $$x=0$$
                     $$\text{At}$$ $$x=1,$$
                     $$\lim_{x\to 1} f(x)=1$$
                     $$\text{Hence,}$$ $$f(x)$$ $$\text{is continuous at}$$ $$x=1$$
                     $$\text{Hence,}$$ $$f(x)$$ $$\text{is continuous everywhere}$$

    $$\textbf{Hence,Correct option is (C)}$$
  • Question 2
    1 / -0
    The value of $$\underset{x\rightarrow 1}{lim}(2-x)^{tan\left(\dfrac{\pi x}{2}\right)}$$ is
    Solution

  • Question 3
    1 / -0
    $$\displaystyle \lim_{x\rightarrow 0}\dfrac {\sin x - x}{x^{3}}$$ is equal to
    Solution

  • Question 4
    1 / -0
    $$\underset{x \rightarrow 1} {lim}\dfrac{x^2-1}{\sin^2x+\cos x\cos (x+2)-\cos^2(x+1)}$$ is-
    Solution

  • Question 5
    1 / -0
    $$\lim_{x\rightarrow 1}\frac{1-x^{-2/3}}{1-x^{-1/3}}$$
  • Question 6
    1 / -0
    $$\overset {lim}{x \rightarrow \pi/2} \dfrac{\sin(x \ cos x)}{cos(x\, \ sin x)}$$ is equal to
    Solution

  • Question 7
    1 / -0
    $$\displaystyle \lim _{x \rightarrow 1}\left(\dfrac{x^{4}+x^{2}+x+1}{x^{2}-x+1}\right)^{\dfrac{1-\cos (x+1)}{(x+1)^{2}}} $$ is equal to:
    Solution

  • Question 8
    1 / -0
     $$ \displaystyle \lim _{x \rightarrow 0}\left(\dfrac{1^{x}+2^{x}+3^{x}+\cdots+n^{x}}{n}\right)^{1 / x} $$ is equal to
    Solution

  • Question 9
    1 / -0
    If $$ \displaystyle \lim _{x \rightarrow 0} \dfrac{x^{n}-\sin x^{n}}{x-\sin ^{n} x} $$ is non-zero finite, then $$ n $$ must be equal
    Solution

  • Question 10
    1 / -0
    $$\displaystyle \lim _{x \rightarrow \infty} \dfrac{2+2 x+\sin 2 x}{(2 x+\sin 2 x) e^{\sin x}} $$ is equal to
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now