Self Studies

Functions Test 10

Result Self Studies

Functions Test 10
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The domain of $$f(x)=\displaystyle \frac{1}{[x]-x}$$ is
    Solution
     $$[\mathrm{x}]-\mathrm{x}\neq 0$$
    Which means $$x$$ must not be an integer.
    The required domain is $$R - Z$$
    Hence, option 'C' is correct.
  • Question 2
    1 / -0
    lf $${f}\left({x}\right)=\sin^{2}{x}+\sin^{2}\left({x}+\displaystyle \dfrac{\pi}{3}\right)+ \cos x \cos \left({x}+\displaystyle \dfrac{\pi}{3}\right)$$ and $${g}\left(\displaystyle\dfrac{5}{4}\right)=1$$, $$g\left(1\right) = 0 $$ then $$\left({g}{o}{f}\right)\left({x}\right)=$$
    Solution
    $$\displaystyle {f}\left({x}\right)=\sin^{2}{x}+\left(\sin{x}\cos\frac{\pi}{3}+ \cos{x} \displaystyle \sin\frac{\pi}{3}\right)^{2}+ {c}{o}{s} {x}\left(\displaystyle \cos {x}\cos\frac{\pi}{3}-\sin {x}\sin\frac{\pi}{3}\right)$$
    $$\displaystyle =\sin ^{ 2 }{ x } +{ \left[ \frac { \sin{ x } }{ 2 } +\frac { \sqrt { 3 } \cos{ x } }{ 2 }  \right]  }^{ 2 }+\frac { \cos^{ 2 }{ x } }{ 2 } -\frac { \sqrt { 3 }  }{ 2 } \cos x \sin x$$
    $$\displaystyle =\sin ^{ 2 }{ x } +\frac { \sin ^{ 2 }{ x }  }{ 4 } +\frac { 3 }{ 4 } \cos ^{ 2 }{ x } +\frac { \sqrt { 3 }  }{ 2 } \sin  x\cos{ x }+\frac { \cos ^{ 2 }{ x }  }{ 2 } -\frac { \sqrt { 3 }  }{ 2 } \sin { x\cos { x }  } $$
    $$=\displaystyle \frac{5}{4}\left(\sin^{2}{x}+\cos^{2}{x}\right)=\frac{5}{4}$$
    $$\displaystyle \therefore $$   $$[{g}{o}{f}]\left({x}\right)={g}[{f}\left({x}\right)]={g}\left(\displaystyle \frac{5}{4}\right)=1$$
  • Question 3
    1 / -0
    If $$ f : R \rightarrow R$$ is defined by $$f(x)=2x-2,$$  then $$(f\circ f) (x) + 2 =$$
    Solution
    Let $$f : R \rightarrow R$$ is defined by $$f(x)=2x-2$$. Then  
    $$(f\circ f)(x)+2= f[f(x)]+2$$
    $$=f(2x-2)+2$$
    $$=2(2x-2)-2+2$$
    $$=2f(x)$$
  • Question 4
    1 / -0
    If $$f(x) =\displaystyle \frac{x}{\sqrt{1-x^2}}, g(x)=\frac{x}{\sqrt{1+x^2}}$$ then $$(f\circ g)(x) =$$
    Solution
    Let $$x= \tan \theta$$
    $$(f\circ g)(x)=f[g(x)] = f[g(\tan  \theta)]$$.
    Since $$\displaystyle  g(x) = \frac{x}{\sqrt{1+x^2}}$$, we have
    $$f[g(\tan  \theta)]=\displaystyle f \left [ \frac{\tan  \theta}{\sqrt{1+\tan^2 \theta}} \right ] = f \left [ \frac{\tan \theta}{\sec \theta} \right ]=f (\sin \theta)$$
    Also since $$f(x)=\cfrac{x}{\sqrt{1-x^2}}$$ , we have
    $$\displaystyle f (\sin \theta) = \frac{\sin \theta}{\sqrt{1-\sin^2 \theta}}$$
    $$=\tan \theta =x$$
  • Question 5
    1 / -0
    If $$f(x)=\log  x,  g(x) = x^3$$ then $$f[g(a)]+f[g(b)]= $$
    Solution
    Given that $$g(x)=x^3$$. Therefore,
    $$f[g(a)]+f[g(b)]=f(a^3)+f(b^3)$$.
    Since $$f(x)=\log x$$, we have 
    $$f(a^3)+fb^3=\log a^3+\log b^3$$
    $$=\log (a^3b^3)=\log ((ab)^{3})$$
    $$=f[g(ab)]$$
  • Question 6
    1 / -0
    If $$f:R \rightarrow R$$ and $$g : R \rightarrow R$$ are defined by $$f(x)=2x+3$$ and $$g(x)=x^2+7$$, then the values of $$x$$ such that $$g(f(x)) =8$$ are:
    Solution
    Since $$f(x)=2x+3$$,
    $$g[f(x)]=8  \Rightarrow g(2x+3)=8$$.
    Also since $$g(x)=x^2+7$$,
    $$g(2+3x)=8\Rightarrow (2x+3)^2+7=8$$
    $$\Rightarrow 2x+3 = \pm 1$$
    $$\Rightarrow x=-1$$ or $$-2$$.
  • Question 7
    1 / -0
    If $$f : R \rightarrow R$$ and $$g :R \rightarrow R$$ are defined by $$f(x) = x -[x]$$ and $$g(x) = [x]$$ for $$x \in R$$, where $$[x]$$ is the greatest integer not exceeding $$x$$, then for every $$x \in R, f(g(x)) =$$
    Solution
    Since $$f(x)=x-[x]$$, we have
    $$f[g(x)] =g(x)-[g(x)]$$
    Also since $$g(x)=[x]$$,we have
    $$g(x)-[g(x)]=[x] - [[x]]$$.
    Here, $$[x]$$ is the greatest integer not exceeding $$x$$. Therefore,
    $$[[x]]=[x]$$ and hence,
    $$[x]-[[x]]=[x]-[x]=0$$
  • Question 8
    1 / -0
    If $$y=f(x) = \dfrac{2x-1}{x-2}$$, then $$f(y)=$$
    Solution
    $$\displaystyle f(y) = \frac{2y-1}{y-2} = \frac{2 \left ( \dfrac{2x-1}{x-2} \right ) -1}{\left ( \dfrac{2x-1}{x-2} \right ) -2}$$
    $$=\displaystyle \frac{4x-2-x+2}{2x-1-2x+4} = \frac{3x}{3} = x$$
  • Question 9
    1 / -0
    Find the domain of $$ e^x$$.
    Solution

  • Question 10
    1 / -0
    A mapping function $$f:X\rightarrow Y$$ is one-one, if
    Solution
    For a function to be one one
    $$f(x_{1})=f(x_{2})$$
    Implies that
    $$x_{1}=x_{2}$$
    Hence the answer is option B
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now