Self Studies

Functions Test 14

Result Self Studies

Functions Test 14
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\displaystyle f(x)=\frac{1}{1-x},x\neq 0,1$$ then the graph of the function $$\displaystyle y=f\left \{ f(f(x)) \right \},x> 1,$$ is
    Solution
    $$f(f(x))=\dfrac{1}{1-\dfrac{1}{1-x}}$$

    $$=-\dfrac{1-x}{x} =g(x)$$

    $$f(g(x))=\dfrac{1}{1+\dfrac{1-x}{x}}$$

    $$=\dfrac{x}{x+1-x}$$

    $$=x$$

    $$y=x$$ is an equation of straight line.

    Hence, 'C' is correct.
  • Question 2
    1 / -0
    If $$f$$ and $$g$$ are two functions such that  $$\displaystyle \left ( fg \right )\left ( x \right )=\left ( gf \right )\left ( x \right )$$ for all $$x$$. Then $$f $$ and $$g$$ may be defined as
    Solution
    A$$)f(x)=$$$$\sqrt{x},g(x)=cosx then (fg)(x) = \sqrt{\cos x} and  (gf)(x) = \cos \sqrt{x}$$.They are not equal.

    B)$$f(x)=x^{3},g(x)=x+1 then (fg)(x) = (x+1)^{3} and (gf)(x)= x^{3}+1$$.They are not equal.

    C)$$f(x)=x1,g(x)=x^{2}+1 then  (fg)(x)=x^{2} and (gf)(x)=x^{2}-2x$$. They are not equal.

    D)$$f(x)=x^{m}, g(x)=x^{n} then (fg)(x)=x^{n+m} and (gf)(x)=x^{n+m}$$.Hence $$(fg)(x)= (gf)(x)$$
  • Question 3
    1 / -0
    If $$\displaystyle f(x)=x^{n},n\in N$$ and $$(gof)(x)=ng(x)$$ then $$g(x)$$ can be 
    Solution
    $$f(x)=x^{n}$$

    $$g(f(x))=ng(x)$$ ...$$(i)$$

    $$\log(f(x))=n\log(x)$$ ...$$(ii)$$

    Taking $$\log(|x|)$$ as $$g(x)$$ the above expression is reduced to eq $$i$$.

    Hence

    $$g(x)=\log(|x|)$$.
  • Question 4
    1 / -0
    The domain of the function $$\displaystyle f\left ( x \right )= \sqrt{\sin ^{-1}\left ( 2x \right )+\frac{\pi }{6}}$$ for real $$x$$, is
    Solution
    For real values of $$f\left(x\right)$$
    $$\displaystyle \sin^{-1}\left(2x\right)+\frac{\pi}{6}\geq0$$
    $$\displaystyle \sin^{-1}\left(2x\right)+\sin^{-1}\left(\frac{1}{2}\right)\geq0$$
    $$\displaystyle \sin^{-1}\left(2x\right)\geq-\sin^{-1}\left(\frac{1}{2}\right)$$
    $$\displaystyle 2x\geq \sin\left(-\sin^{-1}\left(\frac{1}{2}\right)\right)$$
    $$\displaystyle 2x\geq-\frac{1}{2}$$
    $$\displaystyle x\geq\frac{-1}{4}$$
    Also
    $$\displaystyle \sin^{-1}\left(x\right)$$ has a domain of $$\left[-1,1\right]$$
    Hence for $$\displaystyle \sin^{-1}{2x}$$ it will be $$\left[\dfrac{-1}{2},\dfrac{1}{2}\right]$$
    Hence the domain for $$\displaystyle f\left(x\right)$$ will be
    $$\displaystyle \left[\frac{-1}{4},\frac{1}{2}\right]$$
    Hence, option 'A' is correct.
  • Question 5
    1 / -0
    If $$\displaystyle f\left ( x \right )=\left\{\begin{matrix}
    x^{2}         x \geq 0\\
    x              x < 0
    \end{matrix}\right.$$
    then $$\displaystyle (f o f)(x)$$ is given by
    Solution
    For $$x\ge0$$,we have $$\displaystyle f \circ f\left( x \right)= {\left( {{x^2}} \right)^2}=\left( {{x^4}} \right)$$
    For $$x<0$$,we have $$\displaystyle f \circ f\left( x \right)=x$$
  • Question 6
    1 / -0
    Let $$\displaystyle g(x)=1+x-[x]$$ and $$\displaystyle f(x)=\left\{\begin{matrix}{-1}\quad {x< 0} \\ {0} \quad {x=0}\\{1} \quad {x> 0} \end{matrix}\right.$$ Then for all  $$\displaystyle x, f\left \{ g\left ( x \right ) \right \}$$ is equal to 
    Solution
    Let $$g(x) = 1+x-[x] = 1+\{x\}> 0$$ 

    since $$\{x\}\in [0,1) \forall x\in R$$

    Hence $$f\{g(x)\} = 1$$
  • Question 7
    1 / -0
    Let $$\displaystyle f(x)=\frac{ax}{x+1}$$, where $$\displaystyle x\neq -1$$. Then for what value of $$\displaystyle a$$ is $$\displaystyle f( f(x))=x$$ always true
    Solution
    $$\displaystyle f\left( {f\left( x \right)} \right) = \dfrac{{a\dfrac{{ax}}{{x + 1}}}}{{\dfrac{{ax}}{{x + 1}} + 1}} = \dfrac{{\dfrac{{{a^2}x}}{{x + 1}}}}{{\dfrac{{ax + x + 1}}{{x + 1}}}} = \dfrac{{{a^2}x}}{{ax + x + 1}}$$

    Since, $$\displaystyle f\left( {f\left( x \right)} \right) =x$$, we have,

    $$\displaystyle\dfrac{{{a^2}x}}{{ax + x + 1}}=x$$.

    Simplifying the equation we get,

    $${a^2}x = \left( {a + 1} \right){x^2} + x$$

    $$\therefore \left( {a + 1} \right){x^2} + \left( {1 - {a^2}} \right)x = 0$$

    or $$\left( {a + 1} \right)x\left( {x + 1 - a} \right) = 0$$

    Hence the only possible value is $$a=-1$$
  • Question 8
    1 / -0
    If $$\displaystyle f(y)=\frac{y}{\sqrt{1-y^2}}$$; $$\displaystyle g(y)=\frac{y}{\sqrt{1+y^2}}$$ then $$(fog)y$$ is equal to
    Solution
    Given $$\displaystyle f(y)=\frac{y}{\sqrt{1-y^2}}$$  and  $$\displaystyle g(y)=\frac{y}{\sqrt{1+y^2}}$$
    $$\therefore \displaystyle (fog)y = f(g(y))=\dfrac{\dfrac{y}{\sqrt{1+y^2}}}{\sqrt{1-\dfrac{y^2}{1+y^2}}}=y$$
  • Question 9
    1 / -0
    If $$\displaystyle f(x)= (x-1)+(x+1)$$ and
    $$\displaystyle g(x)= f\left \{ f(x) \right \}$$ then $$\displaystyle {g}'(3)$$
    Solution
    Simplifying,$$f(x)$$ we get 

    $$f(x)=2x$$

    Hence

    $$f(f(x))=2(f(x))$$

    $$=2(2x)$$

    $$=4x$$

    Hence

    $$g(x)=f(f(x))$$

    $$=4x$$

    Thus 

    $$g'(x)=4$$

    Hence $$g'(3)=4$$ .

  • Question 10
    1 / -0
    Let f(x)=tan x, x$$\displaystyle \epsilon \left [ -\frac{\pi }{2},\frac{\pi }{2} \right ]$$ and $$\displaystyle g\left (x  \right )=\sqrt{1-x^{2}}$$ Determine $$g o f(1)$$.
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now