Self Studies

Functions Test 36

Result Self Studies

Functions Test 36
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let $$E=\left\{1,2,3,4\right\}$$ and $$F=\left\{1,2\right\}$$. Then the number of onto functions from $$E$$ to $$F$$ is
    Solution
    The total number of ways of distributing $$(1,2)$$ considering them as 2 objects among $$(1,2,3,4)$$ considering them as 4 people is equal to total no. of Onto functions from E to F.

    There can be two ways of distributing $$(1,2),$$

    Either we give both to one people

    Or give $$1$$ to one people and $$2$$ to another.

    So, Total no. of ways $$=4×1+^4C_2×2=16$$
  • Question 2
    1 / -0
    Number of one-one functions from A to B where $$n(A)=4, n(B)=5$$.
    Solution
    $$n(A)=4$$ and $$n(B)=5$$

    For one-one mapping
    4 elements can be selected out of 5 elements of set B in $${}^5C_4$$ ways
    and then those 4 selected elements can be mapped with 4 elements of set A in $$4!$$ ways.

    Number of one-one mapping from $$A$$ to $$B$$ $$={}^5C_4\times4!={}^5P_4=\dfrac{5!}{(5-4)!}=5!=120$$
  • Question 3
    1 / -0
    If $$f\left( x \right) =\sqrt { { x }^{ 2 }-4 } $$ and $$g\left( x \right) =\dfrac { x-1 }{ x-3 } $$ then number of integer elements, which are not in the domain of the function $$(f.g)(x)$$ equals 
    Solution

  • Question 4
    1 / -0
    Let $$f(x)=x^ {135}+x^ {125}-x^ {115}+x^ {5}+1$$. If $$f(x)$$ divided by $$x^ {3}-x$$, then the remainder is some function of $$x$$ say $$g(x)$$. Then $$g(x)$$ is an:-
    Solution



  • Question 5
    1 / -0
    If f : $$R\rightarrow S$$, defined by f(x) =sin x -$$\sqrt{3}$$ cos x +1, is onto, then the interval of S is 
    Solution

  • Question 6
    1 / -0
    If $$ f(x) = \sqrt{2-x} $$ and $$ g(x) = \sqrt{1-2x} , $$ then the domain of $$ log(x) $$ is :
    Solution
    $$f(x)=\sqrt{2-x} \quad g(x)=\sqrt{1-2 x}$$
    Domain of $$\operatorname{fog}(x)$$ is equal to the domain of $$g(x)$$
    $$\begin{array}{l}1-2 x \geq 0 \\ x \leq \frac{1}{2}\end{array}$$
    $$x \in\left(-\infty, \frac{1}{2}\right]$$
  • Question 7
    1 / -0
    If $$  f : R \rightarrow R  $$ be given by $$  f(x)=\left(3-x^{3}\right)^{\dfrac{1}{3}},  $$ then $$fof(x)$$ is
    Solution
    Given, $$  f(x)=\left(3-x^{3}\right)^{\dfrac{1}{3}}  $$.
    Now, 
    $$fof(x)$$
    $$=f[f(x)]$$

    $$ =\left(3-[f(x)]^{3}\right)^{\dfrac{1}{3}},  $$

    $$ =\left(3-[(3-x^3)^{\dfrac{1}{3}}]^{3}\right)^{\dfrac{1}{3}},  $$

    $$ =\left(3-[(3-x^3)]\right)^{\dfrac{1}{3}},  $$

    $$=[x^3]^{\dfrac{1}{3}}$$

    $$=x$$.
  • Question 8
    1 / -0
    Let : $$R\rightarrow R$$ defined as $$f\left( x \right) =\dfrac { x\left( x+1 \right) \left( { x }^{ 4 }+1 \right) +{ 2x }^{ 4 }+{ x }^{ 2 }+2 }{ { x }^{ 2 }+x+1 } $$
  • Question 9
    1 / -0
    If domain of  $$f$$  is  $$D _ { 1 }$$  and domain of  $$g$$  is  $$D _ { 2 }$$   then domain of  $$f + g$$  is :
    Solution

    $${\textbf{Step  -  1 : Use addition rule of two functions}}{\text{.}}$$

                         $${\text{Given two functions f and g such that domain of f is }}{{\text{D}}_1}{\text{ and domain of g is }}{{\text{D}}_2}.$$

                         $${\text{Now, }}\left( {{\text{f + g}}} \right)\left( {\text{x}} \right) = {\text{f}}\left( {\text{x}} \right) + {\text{g}}\left( {\text{x}} \right).$$

    $${\textbf{Step  -  2 : Deduce the domain of f + g}}{\text{.}}$$

                          $${\text{The domain of f + g must satisfy the individual domain of both f and g}}{\text{.}}$$

                         $${\text{which is only possible for the domain }}{{\text{D}}_1} \cap {{\text{D}}_2}.$$

                         $${\text{i}}{\text{.e the domain of f + g is }}{{\text{D}}_1} \cap {{\text{D}}_2}.$$

    $${\textbf{Final answer: the domain of f + g is }}{{\textbf{D}}_1} \cap {{\textbf{D}}_2}.$$

     

  • Question 10
    1 / -0
    Let f : $$R\rightarrow R$$ be a function defined by f(x) = $${ x }^{ 3 }+{ x }^{ 2 }+3x+sin\times .$$ Then f is.
    Solution
    $$f(x)=x^{3}+x^{2}+3 x+\sin x$$
    $$Suppose$$
    $$f(x_{1})=f(x_{2})$$
    $$x_{1}^{3}+x_{1}^{2}+3 x_{1}+\sin x_{1}=x_{2}+x_{2}+\sin x-\sin x_{2}$$
    $$Equating\;above\;equations\;to \;0$$
    $$x_{1}^{3}+x_{1}^{2}+3 x_{1}+\sin x_{1}=x_{2}+x_{2}+\sin x-\sin x_{2}=0$$
    $$Solving\;them$$
    $$It\; will\; not\; prove\; that$$
    $$x_{1}=x_{2}$$
    $$So,\;f(x)\;is\;one-one$$
    $$Range\;f(x)=Real$$
    $$Co-domain\;f(x)=Real$$
    $$Range=Co-domain$$
    $$Hence,\; f(x) \;is \;onto$$
    $$So,\;option\; C \;is\;correct.$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now