Self Studies

Functions Test 41

Result Self Studies

Functions Test 41
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The function $$f(x)= \dfrac{(3^{x}-1^{})^2}{\sin x. \ln(1+x)}, x\neq 0 $$ , is continuous at $$x=0$$. Then the value of $$f(0)$$ is 
    Solution
    Given f(x) is continuous at $$x=0$$
     $$ \Rightarrow \underset{x\rightarrow 0}{\lim}f(x)=f(0) $$
    $$ \Rightarrow \underset{x\rightarrow 0}{\lim}\dfrac{(3^{x}-1)^{2}}{\sin x\ln(1+x)}=f(0)$$
    $$ \Rightarrow f(0)=\underset{x\rightarrow 0}{\lim} \dfrac{\bigg({\dfrac{3^x-1}{x}}\bigg)^2}{\dfrac{\sin x}{x}\dfrac{\ln(1+x)}{x}}=$$ $$ (\log_e3)^{2} $$
  • Question 2
    1 / -0
    The domain of the function $$f(x) = \frac {1} {\sqrt {^{10}C_{x - 1} - 3 \times ^{10} C_x}}$$ contains the points
    Solution
    Given function is defined if $$^{10} C_{x + 1} > 3 ^{10}C_x$$

    $$\Rightarrow \dfrac{1} {11 - x} > \dfrac {3} {4} \Rightarrow 4x > 33$$

    $$\Rightarrow x \geqslant 9 \  but \  x \leq 10 \Rightarrow x = 9, 10$$
  • Question 3
    1 / -0
    The domain of $$ f(x) = \cos^{-1} \left ( \frac{2 - |x|} {4} \right ) + \left [ log (3 - x) \right ]^{-1}$$ is
    Solution
    $$\cos^{-1} \left (\frac {2 - |x|} {4} \right )$$ exists if $$ -1 \leq  \frac {2 - |x|} {4} \leq 1$$

    $$\Rightarrow -6 \leq -|x| \leq 2$$

    $$\Rightarrow -2 \leq |x| \leq 6$$

    $$\Rightarrow |x| \leq 6$$

    The function $$\left [ \log (3 - x) \right ]^{-1} = \frac {1} {\log(3 - x)}$$ is
    defined if 3 - x > 0 and $$x \neq 2,$$

     i.e. if $$x \neq 2$$  and  $$x < 3$$.

    Thus $$\left \{ x | - 6 \leq x \leq 6  \right \} \cap \left \{ x | x \neq 2, x <3 \right \} = \left [-6, 2  \right ) \cup \left (2, 3  \right )$$

  • Question 4
    1 / -0
    The domain of the function $$f(x) = \sqrt{ log \left (\frac{1} {|\sin x| } \right)}$$ is 
    Solution
    $$f(x)$$ is defined for $$\log \left ( \frac{1} {|sin x|} \right ) \geq  0$$
    $$ \Rightarrow \frac {1} {|\sin x|} \geq 1$$ and $$|\sin x| \neq 0$$ .  
    $$|\sin x| \neq 0$$           $$\left [ \therefore \frac{1} {|\sin x|} \geq 1 for \space all \space x \right ]$$
    $$\Rightarrow x \neq n \pi, n \epsilon  Z$$
    Hence, the domain of $$f(x) = R - \left \{n \pi : n \space \epsilon \space Z  \right \}$$.
  • Question 5
    1 / -0
    The domain of $$f(x)  = \log| \log {x}|$$ is 
    Solution
    $$f(x)  = \log| \log {x}|$$, f(x) is defined if $$|log \space x| > 0$$ and x > 0, i.e., 
    if x > 0 and $$ x \neq  1$$                  $$(\therefore |log \space x| > 0 \space if \space x \neq 1)$$
    $$ \Rightarrow x \epsilon (0, 1) \cup (1, \infty)$$
  • Question 6
    1 / -0

    Directions For Questions

    $$f(x) = \begin{cases} x-1, -1 \leq x \leq 0\\x^2, 0\leq x\leq 1 \end{cases}$$ and g(x) = sin x, consider the functions.
    $$h_1(x) = f(|g(x)|) \space and \space h_2(x) = |f(g(x))|$$.

    ...view full instructions

    Which of the following is not true about $$h_1(x)$$?
    Solution

  • Question 7
    1 / -0
    Consider the function
    f(x) = $$\begin{cases} (x + 1) , x \leq 1\\ 2x + 1, 1< x \leq 2 \end{cases} and \space g(x) = \begin{cases} x^2, -1 \leq x < 2\\ x+1, 2 \leq x \leq 3 \end{cases}$$

    The domain of the function f(g(x)) is
    Solution
    $$f(x) = \begin{cases} x + 1, x \leq 1\\ 2x + 1, 1 < x \leq 2 \end{cases}$$

    $$g(x) = \begin{cases} x^2, -1 \leq x < 2\\ x+2, 2 \leq x \leq 3 \end{cases}$$

    $$\Rightarrow f(x) = \begin{cases} g(x) + 1,     g(x) \leq 1\\ 2g(x) +1, 1 < g(x) \leq 2 \end{cases}$$

    $$\Rightarrow \space f(g(x)) = \begin{cases} x^2 + 1,  x^2 \leq 1,  -1 \leq x < 2\\ \space x + 2 + 1, x + 2 \leq 1, 2 \leq x \leq 3\\  \space 2x^2 + 1, 1 < x^2 \leq 2, -1 \leq x < 2\\  \space2(x + 2) + 1, 1 < x + 2 \leq 2, 2 \leq x \leq 3 \end{cases}$$

    $$\Rightarrow f(g(x)) = \begin{cases} x^2 + 1,  -1 \leq x \leq 1 \\  2x^2 + 1, 1< x < \sqrt{2} \end{cases}$$

    Hence, the domain of f(x) is [$$-1, \sqrt{2}$$]
  • Question 8
    1 / -0

    Directions For Questions

    If $$a_{o} = x, a_{n+1} = f(a_n)$$, where n = 0, 1, 2,.....then answer the following question

    ...view full instructions

    If f: $$R\rightarrow R$$ be given by $$f(x) = 3 + 4x$$ and $$a_n = A + Bx$$, then which of the following is not true?
    Solution

  • Question 9
    1 / -0
    Consider two functions $$f(x) = \begin{cases} [x],       -2 \leq x \leq -1\\ |x| + 1,      -1 < x \leq 2 \end{cases}$$ and  g(x) = \begin{cases} [x],   -\pi \leq x < 0 \\ sin x,    0 \leq x \leq \pi \end{cases} where [.] denotes thegreatest integer function

    The exhaustive domain of g(f(x)) is
    Solution

  • Question 10
    1 / -0
    Let $$g(x) = f(x) - 1$$. If $$f(x) + f(1 - x) = 2 \space \forall \space x \space \epsilon \space R$$, then $$g(x)$$ is symmetrical about
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now