Self Studies

Limits and Derivatives Test - 11

Result Self Studies

Limits and Derivatives Test - 11
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Use limit properties to evaluate $$\displaystyle\lim_{x\to4}\dfrac{3x^2\tan \dfrac {\pi}{x}}x $$
    Solution
    $$\displaystyle\lim_{x\to4}\dfrac{3x^2\tan \dfrac {\pi}{x}}x =\lim_{x\to 4}\left(3x\tan\dfrac{\pi}{x}\right)$$, simplify

    $$=3(4)\tan\dfrac{\pi}{4}=12(1)=12$$, [substitute the limit ]

    The from of the limit is not indeterminate, so we can substitute the limit value
  • Question 2
    1 / -0
    Evaluate $$\underset{x \rightarrow 3}\lim \sqrt[4] {x^3}$$ using the properties of limits.
    Solution
    $$\displaystyle \lim _{ x\rightarrow 3 }{ \sqrt [ 4 ]{ { x }^{ 3 } }  }  \\={ (3^3) }^{ { 1 }/{ 4 } }={ (27) }^{ { 1 }/{ 4 } }$$
  • Question 3
    1 / -0
    What is $$\displaystyle\lim _{ x\rightarrow 0 }{ \frac { \cos { x }  }{ \pi -x }  } $$ equal to?
    Solution
    Here, putting $$x=0$$ directly we have,
    $$\displaystyle\lim _{ x\rightarrow 0 }{ \frac { \cos { x }  }{ \pi -x }  } $$ 

    $$=\dfrac {\cos 0 }{ \pi -0 } =\dfrac { 1 }{ \pi  } $$

    Hence, C is correct.
  • Question 4
    1 / -0
    Find $$\dfrac{dy}{dx}$$ of function $$y= e^{x^3} +\dfrac{1}{2} \log x $$
    Solution

    Given  y=  $$e^{x^3} +\frac{logx}{x}$$

    $$(\frac{dy}{dx})=(\frac{de^{x^3}}{dx})+(\frac{d(\frac{logx}{2})}{dx})\\=(\frac{de^{x^3}}{dx^3})\times(\frac{dx^3}{dx})+(\frac{1}{2})(\frac{dlogx}{dx})\\=3x^2e^{x^3}+(\frac{1}{2x})$$

  • Question 5
    1 / -0
    Differentiate: $$x^{100} + \sin x - 1$$
    Solution
    $$\cfrac{\mathrm{d} }{\mathrm{d} x}\left ( x^{100} +\sin x -1 \right )$$

    $$=\cfrac{\mathrm{d} }{\mathrm{d} x}\left ( x^{100} \right )+\cfrac{\mathrm{d} }{\mathrm{d} x}\left ( \sin x \right )-\cfrac{\mathrm{d} }{\mathrm{d} x}\left ( 1 \right )$$

    $$=100x^{100-1}+\cos x -0$$

    $$=100x^{99}+\cos x$$
  • Question 6
    1 / -0
    Consider the differential equation $$\frac { d y } { d x } = \cos x$$ Then we observe that 
    Solution
    $$dy = \cos x\>dx\\\int dy=\int \cos x\>dx\\y=\sin x+C$$

    We must add constant "C" as its family of curves.

  • Question 7
    1 / -0
    $$x^{\frac{1}{2}} + 1=  t$$
    differentiate w.r.t. x
    Solution
    $$x^{\frac{1}{2}} + 1=  t$$

    $$\dfrac{dt}{dx}  = \dfrac{1}{2}(x) ^{\frac{1}{2}-1} + 0$$

    $$\frac{1}{2}(x) ^{\frac{-1}{2}}$$

    $$\dfrac{1}{2x^{\frac{1}{2}}}$$

    $$\dfrac{dt}{dx} = \dfrac{1}{2\sqrt{x}}$$
  • Question 8
    1 / -0
    $$\lim_{x\rightarrow\ 0}\dfrac{\sin7x}{\sin3x}$$ equals
    Solution
    We have,
    $$\lim_{x\rightarrow\ 0}\dfrac{\sin7x}{\sin3x}$$
    $$\lim_{x\rightarrow\ 0}\dfrac{\sin7x}{\sin3x}$$
    $$\lim_{x\rightarrow\ 0}\dfrac{\dfrac{\sin7x}{7x}\times 7x}{\dfrac{\sin3x}{3x}\times 3x}$$
    $$\lim_{x\rightarrow\ 0}\dfrac{\dfrac{\sin7x}{7x}\times 7}{\dfrac{\sin3x}{3x}\times 3}$$
    $$=\dfrac{1\times 7}{1\times 3}$$
    $$=\dfrac{7}{3}$$

    Hence, this is the answer.
  • Question 9
    1 / -0
    If a sequence $$< a_{n} >$$ is such that $$a_{1},a_{n+1}=\dfrac {2+3a_{n}}{1+2a_{n}}$$ and $$\displaystyle \lim_{n \rightarrow \infty}a_{n}$$ exists, then $$a_{n}$$ is equal to
  • Question 10
    1 / -0
    Evaluate the following limit :
    $$lim_{x\rightarrow 0} \dfrac{1-\cos 2x}{x^2}$$
    Solution
    $$lim_{x\rightarrow 0} \dfrac{1-\cos 2x}{x^2}$$

    $$=lim_{x\rightarrow 0} \dfrac{2\sin^2 x}{x^2}$$

    $$=2lim_{x \rightarrow 0} (\dfrac{\sin x}{x} \times \dfrac{\sin x}{x})$$

    $$=2lim_{x\rightarrow 0} \dfrac{\sin x}{x} \times lim_{x\rightarrow 0} \dfrac{\sin x}{x}=2(1)(1)=2$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now