Self Studies

Limits and Derivatives Test - 41

Result Self Studies

Limits and Derivatives Test - 41
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    if $$x=\cos^{3}\theta,y=\sin^{3}\theta$$, then $$\sqrt{1+\left(\dfrac{dy}{dx}\right)^{2}}=$$
    Solution

  • Question 2
    1 / -0
    $$\displaystyle \lim _{ x\rightarrow 2 }{ \frac { \sqrt [ 3 ]{ 60+{ x }^{ 2 } } -4 }{ \sin { \left( x-2 \right)  }  }  } $$
    Solution

  • Question 3
    1 / -0
    The value of $$\displaystyle \lim _{ x\rightarrow 0 }{ \csc^{ 4 }{ x } \int _{ 0 }^{ { x }^{ 2 } }{ \frac { ln\left( 1+4t \right)  }{ { t }^{ 2 }+1 }  } dt } $$ is 
    Solution

  • Question 4
    1 / -0
    $$\displaystyle \lim_{x\rightarrow 0^{+}}{(\csc x)^{1/\log x}}$$=
    Solution

  • Question 5
    1 / -0
    $$\displaystyle \lim_{x\rightarrow \infty}{x^{2}\sin\left(\log_{e}\sqrt{\cos\dfrac{\pi}{x}}\right)}$$
    Solution

  • Question 6
    1 / -0
    $$ \underset { x\rightarrow \cfrac { \pi  }{ 2 }  }{ lim } \cfrac { cot \,  x-cos\, x }{ \left( \pi -{ 2x } \right)^ 3 } $$ equals
    Solution
    Given,

    $$\lim _{x\to \frac{\pi }{2}}\left(\dfrac{\cot \left(x\right)-\cos \left(x\right)}{\left(\pi -2x\right)^3}\right)$$

    apply L-Hospital's rule

    $$=\lim _{x\to \frac{\pi }{2}}\left(\dfrac{-\csc ^2\left(x\right)+\sin \left(x\right)}{-6\left(\pi -2x\right)^2}\right)$$

    $$=\lim _{x\to \frac{\pi }{2}}\left(-\dfrac{-\csc ^2\left(x\right)+\sin \left(x\right)}{6\left(\pi -2x\right)^2}\right)$$

    apply L-Hospital's rule

    $$=\lim _{x\to \frac{\pi }{2}}\left(\dfrac{-2\csc ^2\left(x\right)\cot \left(x\right)-\cos \left(x\right)}{-24\left(\pi -2x\right)}\right)$$

    $$=\lim _{x\to \frac{\pi }{2}}\left(-\dfrac{-2\csc ^2\left(x\right)\cot \left(x\right)-\cos \left(x\right)}{24\left(\pi -2x\right)}\right)$$

    apply L-Hospital's rule

    $$=\lim _{x\to \frac{\pi }{2}}\left(\dfrac{2\left(-2\csc ^2\left(x\right)\cot ^2\left(x\right)-\csc ^4\left(x\right)\right)-\sin \left(x\right)}{-48}\right)$$

    $$=\lim _{x\to \frac{\pi }{2}}\left(-\dfrac{1}{48}\left(2\left(-2\csc ^2\left(x\right)\cot ^2\left(x\right)-\csc ^4\left(x\right)\right)-\sin \left(x\right)\right)\right)$$

    $$=\lim _{x\to \frac{\pi }{2}}\left(-\dfrac{2\left(-2\csc ^2\left(x\right)\cot ^2\left(x\right)-\csc ^4\left(x\right)\right)-\sin \left(x\right)}{48}\right)$$

    $$=-\dfrac{2\left(-2\csc ^2\left(\frac{\pi }{2}\right)\cot ^2\left(\frac{\pi }{2}\right)-\csc ^4\left(\frac{\pi }{2}\right)\right)-\sin \left(\frac{\pi }{2}\right)}{48}$$

    upon solving, we get,

    $$=\dfrac{1}{16}$$
  • Question 7
    1 / -0
    $$\underset { x\rightarrow \frac { \pi  }{ 2 }  }{ lim } \frac { (1-sinx)({ 8x }^{ 2 }-{ \pi  }^{ 3 })cosx }{ { (\pi -2x) }^{ 4 } } $$
    Solution

  • Question 8
    1 / -0
    $$\lim_{n\rightarrow \infty}\dfrac{1}{n^{2}}\left[\sin^{3}\dfrac{\pi}{4n}+2\sin^{3}\dfrac{2\pi}{4n}+3\sin^{3}\dfrac{3\pi}{4n}+....+n\sin^{3}\dfrac{n\pi}{4n}\right]=$$
    Solution

  • Question 9
    1 / -0
    If $$ \alpha \quad and \beta $$ are the roots of the equation  $$ {ax}^{2}+bx+c=0 $$, then 
     $$ \underset { x\rightarrow \cfrac { \pi  }{ 2 }  }{ lim } \cfrac { tan\left[ \left( \alpha +\beta  \right) x \right]  }{ sin\left[ \left( \alpha \beta  \right) x \right]  }  $$ is equal to :
    Solution

  • Question 10
    1 / -0
    If $$L = \underset{x \rightarrow 0}{lim} \dfrac{a \, sin \, x - sin \, 2x}{tan^3 x}$$ is finite, then the value of L is :
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now