Self Studies

Limits and Derivatives Test - 43

Result Self Studies

Limits and Derivatives Test - 43
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\underset { x\rightarrow 1 }{ lim } \frac { xtan(x-[x]) }{ x-1 } $$ is:
    Solution

  • Question 2
    1 / -0
    The value of $$\displaystyle \lim_{x \rightarrow 0} \left(\dfrac{\sin x}{x}\right)^{1/x^{2}}$$ is 
    Solution

  • Question 3
    1 / -0
    If z = z(x) and $$(2cosx)\frac { dz }{ dx } +(sinx)z=sinx$$, z(0) = 3, then $$z(\frac { \pi  }{ 2 } )$$ equals :
    Solution

  • Question 4
    1 / -0
    For the function, $$f(x) = (x - \frac{1}{x})^2$$, the first derivative with respect to x is 
    Solution

  • Question 5
    1 / -0
    The value of $$lim_{x\to 0} \dfrac{sin(\pi cos^2 x)}{x^2}$$ equals 
    Solution

  • Question 6
    1 / -0
    The value of $$lim_{\theta \to \dfrac{\pi}{2}} (sec \theta - tan \theta)$$ equals 
    Solution

  • Question 7
    1 / -0
    $$\lim- {x\to 0}$$ $$\dfrac{1- cos(1 - cos4x)}{x^4}$$ is equal to : 
    Solution

  • Question 8
    1 / -0
    The value of $$\displaystyle\lim_{x\to 0} |x|^{sinx}$$ equals 
    Solution

  • Question 9
    1 / -0
    If $$\displaystyle \lim _{ x\rightarrow 0 }{ \dfrac { \left( \sin { nx }  \right) \left[ (a-n)nx-tanx \right]  }{ { x }^{ 2 } }  } =0$$, then the value of $$a$$
    Solution

  • Question 10
    1 / -0
    Arrange the following limits in the ascending order :
    (1)  $$\lim _ { x \rightarrow \infty } \left( \dfrac { 1 + x } { 2 + x } \right) ^ { x + 2 }$$

    (2)  $$\lim _ { x \rightarrow 0 } ( 1 + 2 x ) ^ { 3 / x }$$

    (3)  $$\lim _ { \theta \rightarrow 0 } \dfrac { \sin \theta } { 2 \theta }$$

    (4)  $$\lim _ { x \rightarrow 0 } \dfrac { \log _ { e } ( 1 + x ) } { x }$$
    Solution
    (i) $$\underset { x\rightarrow \infty  }{ lim } { \left( \dfrac { 1+x }{ 2+x }  \right)  }^{ x+2 }$$
    $$=$$ $${ \left( \dfrac { \dfrac { 1 }{ x } +1 }{ \dfrac { 2 }{ x } +1 }  \right)  }^{ x+2 }$$
    $$=\underset { x\rightarrow \infty  }{ lim } { e }^{ ln{ \left( \dfrac { 1+x }{ 2+x }  \right)  }^{ 2+x } }$$
    $$={ e }^{ \underset { x\rightarrow \infty  }{ lt } \left( 2+x \right) ln\left( \dfrac { 1+x }{ 2+x }  \right)  }$$
    $$={ e }^{ \underset { x\rightarrow \infty  }{ lt } \dfrac { ln\left( 1+x \right) -ln\left( 2+x \right)  }{ \left( 1/2+x \right)  }  }$$
    $$={ e }^{ \underset { x\rightarrow \infty  }{ lt } \dfrac { \dfrac { 1 }{ 1+x } -\dfrac { 1 }{ 2+x }  }{ \dfrac { -1 }{ { \left( 2+x \right)  }^{ 2 } }  }  }$$
    $$={ e }^{ \underset { x\rightarrow \infty  }{ lt } \dfrac { { \left( 2+x \right)  }^{ 2 }\left[ \left( 2+x \right) -\left( 1+x \right)  \right]  }{ \left( 2+x \right) -\left( 1+x \right) \left( 2+x \right) \left( 1+x \right)  }  }$$
    $$={ e }^{ \underset { x\rightarrow \infty  }{ lt } \dfrac { \left( 2+x \right)  }{ 1+x }  }$$
    $$={ e }^{ 1 }$$
    (ii) $$\underset { x\rightarrow 0 }{ lim } { \left( 1+2x \right)  }^{ 3/x }$$
    $$={ e }^{ \underset { x\rightarrow 0 }{ lt } \left( 2x \right) 3/x }$$
    $$={ e }^{ 6 }$$
    (iii) $$\underset { \theta \rightarrow 0 }{ lt } \dfrac { \sin\theta  }{ 2\theta  } =\underset { \theta \rightarrow 0 }{ lt } \dfrac { \cos\theta  }{ 2 } =\dfrac { 1 }{ 2 } $$
    (iv) $$\underset { x\rightarrow 0 }{ lt } \dfrac { { log }_{ e }\left( 1+x \right)  }{ x } .\underset { x\rightarrow 0 }{ lt } \dfrac { 1 }{ 1+x } =1$$
    $$\therefore$$   $$3<4<1<2$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now