Self Studies

Limits and Derivatives Test - 45

Result Self Studies

Limits and Derivatives Test - 45
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\underset { x\rightarrow 0 }{ Lt } \cfrac {tanx-x}{x^2tanx}$$ equals:
    Solution

  • Question 2
    1 / -0
    $$\dfrac { d }{ dx } \left[ \left( \dfrac { { tan }^{ 2 }2x-{ tan }^{ 2 }x }{ 1-{ tan }^{ 2 }2x{ tan }^{ 2 }x }  \right) cot3x \right]$$
    Solution

  • Question 3
    1 / -0
    $$\displaystyle\lim_{x\rightarrow \infty}\left(\dfrac{x+1}{2x+1}\right)^{x^2}$$ equals?
    Solution

  • Question 4
    1 / -0
    $$\underset { x\rightarrow \pi/2 }{ lim } \left(\dfrac{cosec x-1}{cot^2x}\right)= $$
    Solution

  • Question 5
    1 / -0
    $$\underset{x \rightarrow \infty}{lim} \dfrac{2 \tan^{-1} x}{\pi}$$ equals $$e^L$$ then $$L$$ is equal to
    Solution

  • Question 6
    1 / -0
    $$\displaystyle \lim _{ x\rightarrow x/2 } \dfrac { \left[ 1-\tan { \left( \dfrac { x }{ 2 }  \right)  }  \right] \left[ 1-\sin { x }  \right]  }{ \left[ 1+\tan { \left( \dfrac { x }{ 2 }  \right)  }  \right] \left[ \pi -2x \right] ^{ 3 } } $$ is
    Solution

  • Question 7
    1 / -0
    $$\displaystyle \lim _{ \theta \rightarrow 0 }{ \frac { 4\theta \left( \tan { \theta -2\theta \tan { \theta  }  }  \right)  }{ { \left( 1-\cos { 2\theta  }  \right)  }^{ 2 } }  } $$ is
    Solution

  • Question 8
    1 / -0
    $$\displaystyle\lim _{ x\rightarrow 0 }{ \dfrac { 3\sin { \left( { x }^{ 9} \right) -\sin { \left( { x }^{ 9 } \right)  }  }  }{ { x }^{ 3 } }  } =q$$
    Solution

  • Question 9
    1 / -0
    evaluate$$ \underset { x\rightarrow 0 }{ lim } \frac { x-\int _{ 0 }^{ x }{ { cost }^{ 2 }dt }  }{ { x }^{ 3 }-6x } $$
    Solution

  • Question 10
    1 / -0
    If $$k$$  is an integer such that $$\lim_{n \rightarrow \infty} \left[\left(\cos \dfrac{k\pi}{4}\right)^{2}-\left(\cos \dfrac{k\pi}{6}\right)^{2}\right]=0$$ then :
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now