Self Studies

Limits and Derivatives Test - 53

Result Self Studies

Limits and Derivatives Test - 53
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    the value of $$\underset { x\rightarrow 0 }{ lim } \frac { sin\alpha X-sin\beta X }{ { e }^{ \alpha X }-{ e }^{ \beta X } } $$ equals
    Solution

  • Question 2
    1 / -0
    $$\mathop {\lim }\limits_{h \to 0} \frac{{\sin \left( {a + 3h} \right) - 3\sin \left( {a + 2h} \right) + 3\sin \left( {a + h} \right) - \sin a}}{{{h^3}}}$$ is equal to 
    Solution

  • Question 3
    1 / -0
    $$\lim _{ x\rightarrow -\infty  }{ \cfrac { x^{ 4 }\sin { \cfrac { 1 }{ x }  } +x^{ 2 } }{ 1+\left| x \right| ^{ 3 } } = } $$
    Solution

  • Question 4
    1 / -0
    $$L\underset { x\rightarrow \infty  }{ im } \left( \sin { \sqrt { x+1 } -\sin { \sqrt { x }  }  }  \right) =$$
  • Question 5
    1 / -0
    $$ \lim _{x \rightarrow 0} \frac{1-\cos ^{3} x}{x \sin 2 x}= $$
    Solution

  • Question 6
    1 / -0
    $$\displaystyle {Lt}_{x\rightarrow 0}\dfrac{cos5x cos3x}{x(sin5x sin3x)}$$ = 
    Solution

  • Question 7
    1 / -0
    The value of $$\theta ,\quad is$$
    $$\underset { o\rightarrow o }{ lim } \quad \frac { { cos }^{ 2 }\left\{ 1-{ cos }^{ 2 }\quad \left( 1-{ cos }^{ 2 }\quad .....\left( { cos }^{ 2 }\left\{ 1-{ cos }^{ 2 }\theta  \right\}  \right)  \right)  \right\}  }{ sin\left( \frac { \pi (\sqrt { \theta +4 } -2 }{ \theta  }  \right)  } $$
    Solution

  • Question 8
    1 / -0
    $$\underset { x\rightarrow 0 }{ lim } \cfrac { 8 }{ { x }^{ 8 } } \left( 1-cos\cfrac { { x }^{ 2 } }{ 2 } -cos\cfrac { { x }^{ 2 } }{ 4 } +cos\cfrac { { x }^{ 2 } }{ 2 } .cos\cfrac { { x }^{ 2 } }{ 4 }  \right) =$$
    Solution

  • Question 9
    1 / -0
    $$\underset { x\rightarrow \infty  }{ Lim } (sin\sqrt { x+1 } -sin\sqrt { x } )=$$
    Solution

  • Question 10
    1 / -0
    $$\lim _{ x\rightarrow \infty  }{ \frac { \sin { x } \sin { (\frac { \pi  }{ 3 } +x) } \sin { (\frac { \pi  }{ 3 } -x) }  }{ x }  } =$$
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now