Self Studies

Trigonometric Functions Test -4

Result Self Studies

Trigonometric Functions Test -4
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$ X\sin { \left( { 90 }^{ \circ  }-\theta  \right) \cot { \left( { 90 }^{ \circ  }-\theta  \right)  }  } =\cos { \left( { 9 }0^{ \circ  }-\theta  \right)  } $$, then x =
    Solution
    $$x\sin(90-\theta)\cot(90^o-\theta)=\cos(90-\theta)$$
    $$\Rightarrow x\cos \theta\tan\theta =\sin\theta$$
    $$\Rightarrow x=1$$.

  • Question 2
    1 / -0
    The value of $$\operatorname { \sec } ^ { 2 } A \operatorname { \tan } ^ { 2 } B - \tan ^ { 2 } A \operatorname { \sec } ^ { 2 } B $$ is
    Solution
    $$\left( 1+{ \tan }^{ 2 }A \right) { \tan }^{ 2 }B-{ \tan }^{ 2 }A\left( 1+{ \tan }^{ 2 }B \right) $$
    $$={ \tan }^{ 2 }B+{ \tan }^{ 2 }A{ \tan }^{ 2 }B-{ \tan }^{ 2 }A-{ \tan }^{ 2 }A{ \tan }^{ 2 }B$$
    $$={ tan }^{ 2 }B-{ tan }^{ 2 }A\quad \left[ A \right] $$
  • Question 3
    1 / -0
    $$\dfrac{\cos(90-A)\sin(90-A)}{\tan (90-A)}$$=
    Solution
    $$ =  \dfrac{cos\,(90-A)\,sin\,(90-A)}{tan(90-A)}$$
    $$ = \dfrac{sin\,A \times cos\,A}{\dfrac{cos\,A}{sin\,A}} = \dfrac{sin^{2}A\times cos\,A}{cos\,A}$$
    $$ = sin^{2}A$$

  • Question 4
    1 / -0
    Which of the following is the principal value of $$\cos { ^{ -1 }\left( \dfrac { -1 }{ 2 }  \right)  } $$?
    Solution

    we know $$ cos^{-1}(-x) = \pi -cos^{-1}x.$$

    $$ cos^{-1}(-\dfrac{1}{2})\\ = \pi -cos^{-1}(\dfrac{1}{2})$$
    $$ = \pi -cos^{-1}(cos\dfrac{\pi }{3}).$$
    $$ =  \pi -\dfrac{\pi }{3}.$$
    $$ = \dfrac{2\pi }{3} $$
    $$ \therefore $$ principal value of $$ cos^{-1}(-\dfrac{1}{2}) $$ is $$ \dfrac{2\pi }{3}.$$
  • Question 5
    1 / -0
    If $$cos x=b$$, then for what b do the roots of the equation form an AP ?
    Solution
    $$ \lim_{x\rightarrow 0} \frac{log(1+x^{3})}{sin^{3}x}  = \lim_{x\rightarrow 0}    \frac{log(1+x^{3})}{x^{3}} \frac{x^{3}}{sin^{3}x}$$
    $$ = \lim_{x\rightarrow 0} \frac{d}{dx}  \frac{log(1+x^{3})}{\frac{d}{dx}}\times 1 $$
    $$ = \lim_{x\rightarrow 0} \frac{\frac{1}{1+x^{3}}(3x)^{2}}{3x^{2}}\times 1$$
    $$ =1\times 1 = 1 $$

  • Question 6
    1 / -0
    What is the value of $$\cfrac{\tan{A}-\sin{A}}{\sin^3{A}}$$?
    Solution
    $$\dfrac{\tan A-\sin A}{\sin^3 A}=\dfrac{\dfrac{\sin A}{\cos A}-\sin A}{\sin^3 A}=\dfrac{\dfrac{1-\cos A}{\cos A}}{\sin^2 A}=\dfrac{\text{sec} A(1-\cos A)}{1-\cos ^2 A}$$
                                $$=\dfrac{\text{sec}A(1-\cos A)}{(1-\cos A)(1+\cos A)}$$
                                $$=\dfrac{\text{sec}A}{1+\cos A}$$
  • Question 7
    1 / -0
    The range of the function $$f(x)=\left (\cos ^2x+4\sec ^2x\right )$$ is
    Solution
    As we know that
    $$AM\ge GM$$
    $$\implies \dfrac{\cos^2 x+\text{sec}^2 x}{2}\ge \sqrt{(\cos^2 x)(4\text{sec}^2 x)}$$
    $$\implies \dfrac{f(x)}{2}\ge \sqrt{4}$$
    $$\implies f(x)\ge 4$$
    So the range of $$f(x)$$ is $$[4,\infty)$$
  • Question 8
    1 / -0
    The principle solution of equation $$\cot x =  - \sqrt 3 $$ is 
    Solution
    Given $$\cot x=-\sqrt{3}$$

    $$\tan x=\dfrac{1}{\cot x}$$

    $$\tan x=\dfrac{1}{-\sqrt{3}}$$

    $$\tan x=\dfrac{-1}{\sqrt{3}}$$

    We know that $$\tan 30^o=1/\sqrt{3}$$

    We find the value of x where $$\tan$$ is negative

    $$\tan$$ is negative in $$2$$ and $$4^{th}$$ quadrant.

    Value in $$2^{nd}$$ Quadrant $$=180^o-30^o=150^o$$

    Value in $$4^{th}$$ Quadrant $$=360^o-30^o=330^o$$

    So, principal solution are
    $$x=150^o$$ and $$x=330^o$$

    $$x=150 \times \pi/180$$ and $$x=330\times \pi/180$$

    $$x=5\pi/6$$ and $$x=11\pi/6$$

    To find general solution
    Let $$\tan x=\tan y$$ ………..$$(1)$$
    $$\tan x=-1/\sqrt{3}$$ ………..$$(2)$$

    From $$(1)$$ & $$(2)$$

    $$\tan y=-1/\sqrt{3}$$
    $$\tan y=\tan 5\pi/6$$
    $$y=5\pi/6$$

    Since $$\tan x=\tan y$$
    General solution is $$x=n\pi +y$$ where $$n\in z$$.
    Hence $$x=n\pi +5\pi /6$$ where $$n\in z$$.
  • Question 9
    1 / -0
    $$\displaystyle 1^c =?$$
    Solution
    $$\displaystyle \pi^c = 180^0 \\ \Rightarrow 1^c = \left(\dfrac{180}{\pi}\right)^0 = \left(180 \times \dfrac{7}{22}\right)^0 = \left(\dfrac{630}{11}\right)^0 = 57^016'22''$$ (app.).
  • Question 10
    1 / -0
    Let $$n$$ be a positive integer such that
    $$\displaystyle \sin(\frac{\pi}{2^{n}})+\cos(\frac{\pi}{2^{n}})=\frac{\sqrt{n}}{2}$$ 

    Solution

    $$\left(\sin(\cfrac{\pi}{2^n})+\cos(\cfrac{\pi}{2^n})\right)^2=\dfrac{n}{2}$$

    $$1+2\sin \cfrac{\pi}{2^n}\cos\cfrac{\pi}{2^n}=\dfrac{n}{4}$$......$$[\cos^{2}\theta +\sin^{2}\theta =1]$$

    $$\displaystyle \Rightarrow 1+\sin \cfrac{\pi }{2^{n-1}}=\cfrac{n}{4}$$ 


    $$\displaystyle \sin(\cfrac{\pi }{2^{n-1}})=\cfrac{n-4}{4}$$
     AS  $$n=+ve. \neq 1$$  and   $$\sin\theta\le 1$$
    $$\displaystyle 0 < \cfrac{n-4}{4} \leq 1$$
    $$\therefore 4 < n \leq 8$$

     

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now