Self Studies
Selfstudy
Selfstudy

Relations and Functions Test - 39

Result Self Studies

Relations and Functions Test - 39
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$f(x)=\displaystyle \dfrac{x}{\sqrt{1-x^{2}}},g(x)=\displaystyle \dfrac{x}{\sqrt{1+x^{2}}} $$, then $$(fog)(x)=$$       
    Solution
    $$fog\left(x\right)=f\left(g\left(x\right)\right)$$
    $$\displaystyle =f\left(\dfrac{x}{\sqrt{1+x^{2}}}\right)$$
    $$\displaystyle =\dfrac{\dfrac{x}{\sqrt{1+x^{2}}}}{\sqrt{1-\dfrac{x^{2}}{1+x^{2}}}}=x$$
  • Question 2
    1 / -0
    If $$f(x)=1+x+x^{2}+x^{3}+\ldots\ldots $$ for $$\left | x \right |<1$$  then $$f^{-1}(x)=$$
    Solution
    $$f(x)=1+x+x^{2}+\ldots\ldots$$
    $$=\dfrac{1}{1-x}$$
    Let $$y=\dfrac{1}{1-x}=f(x)$$
    $$1-x=\dfrac{1}{y}$$
    $$x=1-\dfrac{1}{y}=\dfrac{y-1}{y}$$
    But  $$x=f^{-1}(y)=\dfrac{y-1}{y}$$
  • Question 3
    1 / -0
    If the function is $$f:R\rightarrow R,  g:R\rightarrow R$$ are defined as $$f(x)=2x+3, g(x)=x^{2}+7$$  and  $$f[g(x)]=25$$  then  $$x=$$    
    Solution
    $$f(g(x))=f(x^{2}+7) =25$$
    $$=2(x^{2}+7)+3$$
    $$=2x^{2}+17$$
    $$\Rightarrow   2x^{2}=8$$
    $$x^{2}=4  \Rightarrow   x=\pm 2$$
  • Question 4
    1 / -0
    If $$f(x)=\displaystyle \frac{2^{x}+2^{-x}}{2^{x}-2^{-x}}$$,  then  $$f^{-1}(x)=$$
    Solution
    Let $$f\left(x\right)=y=\displaystyle \frac{2^{x}+2^{-x}}{2^{x}-2^{-x}}$$
    $$\Rightarrow 2^{x}\left(y-1\right)=2^{-x}\left(1+y\right)$$
    $$2^{2x}=\displaystyle\frac{y+1}{y-1}$$
    $$\displaystyle 2x=\log_{2}\left(\frac{y+1}{y-1}\right)$$
    $$\Rightarrow \displaystyle x=f^{-1}\left(y\right)=\frac{1}{2}\log_{2}\left(\frac{y+1}{y-1}\right)$$
    So, $$\displaystyle f^{-1}x=\frac{1}{2}\log_{2}\left(\frac{x+1}{x-1}\right)$$
  • Question 5
    1 / -0
    I: If $$f:A\rightarrow B$$ is a bijection only then does $$f$$ have an inverse function
    II: The inverse function $$f:R^{+}\rightarrow R^{+}$$ defined by $$f(x)=x^{2}$$ is $$f^{-1}(x)=\sqrt{x}$$
    Solution
    $$f$$ is a bijection  $$\Rightarrow$$   $$f$$ is one one and onto.
    $$\therefore$$ there exists on inverse value for every value in co-domain.
    $$\therefore$$ $$f$$ is invertible if and only if $$f$$ is a bijection
    $$f:R^{+}\rightarrow R^{+}   ;   f(x)=x^{2}=y$$
    $$\Rightarrow x=\sqrt{y}=f^{-1}(y)$$
  • Question 6
    1 / -0
    If $$F(n)=(-1)^{k-1}(n-1), G(n)=n-F(n)$$ then $$ (GoG)(n)=$$ (where $$k$$ is odd)
    Solution
    $$G(n)=n-(-1)^{k-1}(n-1)$$
    $$GoG(n)=G(n-(-1)^{k-1}(n-1))$$
    $$=n-(-1)^{k-1}(n-1)-(-1)^{k-1}((n-1)-(-1)^{k-1}(n-1))$$
    $$=n-(n-1)$$
    $$=1$$
  • Question 7
    1 / -0
    If $$f(x)=\dfrac{x}{\sqrt{1-x^{2}}}$$, then $$ (fof)(x)=$$
    Solution
    $$fof\left ( x \right )=f\left ( f\left ( x \right ) \right )=\left ( x/\sqrt{1-x^{2}} \right )/\left ( \sqrt{1-\left ( x^{2}/\left ( 1-x^{2} \right ) \right )} \right )$$
    $$=\left ( x/\sqrt{1-x^{2}} \right )/\sqrt{\left ( 1-x^{2}-x^{2} \right )/\left ( 1-x^{2} \right )}$$
    $$=\left ( x/\sqrt{1-x^{2}} \right )/\left ( \sqrt{1-2 x^{2}} /\sqrt{1-x^{2}}\right)$$
    $$=x/\sqrt{1-2x^{2}}$$
  • Question 8
    1 / -0
    If $$f(x)=\sin^{-1}\left \{ 3-(x-6)^{4} \right \}^{1/3}$$  then $$ f^{-1}(x)=$$
    Solution
    Let $$f(x)=y=\sin^{-1}(3-(x-6)^{4})^{\frac{1}{3}}$$
    $$\sin y=(3-(x-6)^{4})^{\frac{1}{3}}$$
    $$\sin^{3}y=3-(x-6)^{4}$$
    $$(x-6)^{4}=3-\sin^{3}y$$
    $$x-6=(3-\sin^{3}y)^{\frac{-1}{4}}$$
    $$x=(3-\sin^{3}y)^{\frac{1}{4}}+6$$
    $$x=f^{-1}(y)=(3-\sin^{3}y)^{\frac{1}{4}}+6.$$
  • Question 9
    1 / -0
    Which of the following functions defined from $$(-\infty ,\infty )$$ to $$ (-\infty ,\infty )$$ is invertible ?
    Solution
    $$f(x)=\sin(2x+3)$$ lies only from $$[-1,1]$$ and hence is not onto.
    So, $$f(x)$$ is not bijective
    $$\therefore$$ it is not invertible

    $$f(x)=x^{2}+4$$ is always positive and so not onto.
    So, $$f(x)$$ is not bijective
    $$\therefore$$ It is also not invertible.

    $$f(x)=x^{3}$$ varies from $$(-\infty ,\infty )$$ as $$x$$ varies from $$(-\infty ,\infty ) $$
    So, $$f(x)$$ is bijective
    $$\therefore$$  It is invertible.

    $$f(x)=\cos x$$ always lies between $$[-1,1]$$ and so is into function.
    So, $$f(x)$$ is not bijective
    Hence, not invertible.
  • Question 10
    1 / -0
    If $$f(x)=\dfrac{x}{\sqrt{1+x^{2}}}$$ then $$fofof(x)=$$
    Solution
    $$fofof\left(x\right)=fof\left(\dfrac{x}{\sqrt{1+x^{2}}}\right)$$
    $$=f\left(\dfrac{\dfrac{x}{\sqrt{1+x^{2}}}}{\sqrt{1+\dfrac{x^{2}}{1+x^{2}}}}\right)$$
    $$=f\left(\dfrac{x}{\sqrt{1+2x^{2}}}\right)$$
    $$=\left(\dfrac{\dfrac{x}{\sqrt{1+2x^{2}}}}{\sqrt{1+\dfrac{x^{2}}{1+2x^{2}}}}\right)$$
    $$=\dfrac{x}{\sqrt{1+3x^{2}}}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now