Self Studies

Vector Algebra Test - 13

Result Self Studies

Vector Algebra Test - 13
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let $$a,b,c,d $$ be the position vectors of the points $$\mathrm{A},\mathrm{B},\mathrm{C},\mathrm{D}$$ respectively. The condition for the figure $$ABCD$$ to be a parallelogram is
    Solution
    For $$ABCD$$ to be a Parallelogram $$\vec{AB}||\vec{DC}$$ and $$\vec{AB}=\vec{DC}$$
    So $$\vec{b}-\vec{a}=\vec{c}-\vec{d}$$
    $$\vec{b}+\vec{d}=\vec{a}+\vec{c}$$  --- (1)
    or  $$\vec{AD}=\vec{BC}$$
    $$\vec{d}-\vec{a}=\vec{c}-\vec{b}$$
    $$\vec{d}+\vec{b}=\vec{c}+\vec{a}$$ --- (2)

  • Question 2
    1 / -0
    Let $$2\hat{i}+\hat{k}=\vec{\mathrm{a}},\ 3\hat{j}+4\hat{k}=\vec{{b}}$$, $$8\hat{i}-3\hat{j}$$ $$=\vec{\mathrm{c}}$$. If $$\vec{a}={x}\vec{b}+{y}\vec{{c}}$$, then $$(x,y) $$ is equal to
    Solution
    $$2\hat{i}+\hat{k}= x(3\hat{j}+4\hat{k})+y(8\hat{i}-3\hat{j})$$
    $$8y= 2 $$ $$( as\ \hat{i},\ \hat{j},\ \hat{k}$$ are not collinear)
    $$y=\dfrac{1}{4}$$
    $$4x= 1$$
    $$x=\dfrac{1}{4}$$
  • Question 3
    1 / -0
    If $$A(\overline{a})$$ , $$B(\overline{b})$$ and $$C(\overline{c})$$ be the vertices of a triangle $$ABC$$ whose circumcentre is the origin then orthocentre is given by
    Solution
    P.V. of circumcentre $$= (0,0,0)$$
    P.V. of circumcentre $$= \dfrac{\vec{a}+\vec{b}+\vec{c}}{3}$$
    $$centroid = \dfrac{orthocentre + 2\ circumcentre}{3}$$      (section formula)
    $$\dfrac{\vec{a}+\vec{b}+\vec{c}}{3}= \dfrac{orthocentre}{3}$$
    orthocentre$$ = \vec{a}+\vec{b}+\vec{c}$$
  • Question 4
    1 / -0
    Let $$\vec{A}= \hat{i}+6\mathrm{i}+6\mathrm{k},\vec{B}=-4\hat{i}+9\hat{i}+6\hat{k},\vec{G}=\displaystyle \dfrac{-5}{3}\hat{i}+\dfrac{22}{3}\hat{j}+\dfrac{22}{3}\hat{k}$$. If $$\mathrm{G}$$ is the centroid then the triangle $$ABC$$ is
    Solution
    Centroid of a Triangle is given by $$G=\dfrac{A+B+C}{3}$$
    Putting values
    $$\dfrac{-5\hat{i}+15\hat{j}+12k+C}{3}= \dfrac{-5\hat{i}}{3}+\dfrac{22}{3}\hat{j}+\dfrac{22}{3}\hat{k}$$
    $$\vec{C}= 7\hat{j}+10\hat{k}$$
    $$BC^{2}= AC^{2}+AB^{2}$$ right angled at $$A$$
    & $$AB=AC$$ (isosceles triangle)

  • Question 5
    1 / -0
    If the position vectors of the points $$A, B, C, D$$ are$$(0,2, 1)$$, $$(3,1,1),$$ $$(-5,3,2)$$,$$(2,4,1)$$ respectively and if $$PA+PB+PC+PD=0$$ then the position vector of P is
    Solution
    Taking $$P$$ common from given condition
    $$4\vec{P}-(\vec{A}+\vec{B}+\vec{C}+\vec{D})= 0$$
    $$\vec{P}= \dfrac{\vec{A}+\vec{B}+\vec{C}+\vec{D}}{4}$$

    $$\vec{P}=(0, \dfrac{10}{4}, \dfrac{5}{4})$$
  • Question 6
    1 / -0
    If $$G$$ is the centroid of the triangle $$ABC$$ then $$\vec{GA}+\vec{GB}+\vec{GC}$$ is equal to 
    Solution
    Putting values in given expression
    $$\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}= 3\vec{G}-(\vec{a}+\vec{b}+\vec{c})$$
                                   $$= 3(\dfrac{\vec{a}+\vec{b}+\vec{c}}{3})-(\vec{a}+\vec{b}+\vec{c})$$
                                   $$= 0$$
  • Question 7
    1 / -0
    Let $$\mathrm{A}\mathrm{B}\mathrm{C}$$ be a triangle and let $$\mathrm{S}$$ be its circumcentre and $$\mathrm{O}$$ be its orthocentre. The $$\overline{\mathrm{S}\mathrm{A}}+\overline{\mathrm{S}\mathrm{B}}+\overline{\mathrm{S}\mathrm{C}}= $$
    Solution
    $$\overline{SA}+\overline{SB}+\overline{SC}=(\bar{A}+\bar{B}+\bar{C})-3\bar{S}\ -(1)$$
    $$S$$is circumcentere
    $$C$$ is centroid
    $$O$$ is orthocentre
    $$2C+0=3S-3C$$
    $$0-C = 3(S-C)$$
    $$\overline{CO}=3\ \overline{CS}\ -(2)$$
    apply (2) in (1)
    $$=3(\frac{(\bar{A}+\bar{B}+\bar{C})}{3}-\bar{S})$$
    $$=\ \overline{SO}$$

  • Question 8
    1 / -0
    If $$\vec{a} \times \vec{b} = \vec{b} \times \vec{a}$$, then
    Solution
    Given, $$\vec{a}\times \vec{b}=\vec{b}\times\vec{a}$$
    $$\vec{a}\times \vec{b}=-(\vec{a}\times\vec{b})$$
    $$\implies 2(\vec{a}\times\vec{b})=0$$
    $$\implies \vec{a}\times \vec{b}=0$$
    Hence, $$\vec{a}$$ is parallel to $$\vec{b}$$
    $$\vec{a}=k\vec{b}$$, where $$k$$ is a scalar quantity.
  • Question 9
    1 / -0
    Taking $$O$$' as origin and the position vectors of $$A, B$$ are $$\vec i+3\vec{j}-2\vec k, 3\vec{i}+\vec{j}-2\vec{k}$$. The vector $$\overrightarrow{OC}$$ is bisecting the angle $$AOB$$ and if $$C$$ is a point on line $$\overrightarrow{AB}$$ then $$C$$ is
    Solution
    Taking magnitude of vectors

    $$\left | \overrightarrow{OA} \right |=\sqrt{(0-1)^2+(0-3)^2+(0+2)^2}= \sqrt{14}$$ 

    and $$ \left | \overrightarrow{OB} \right |=\sqrt{(0-3)^2+(0-1)^2+(0+2)^2}= \sqrt{14}$$

    So, $$\dfrac{AC}{CB}= \dfrac{1}{1}$$

    Applying Section Formula

    $$C= \dfrac{B+A}{2} $$

    $$C=\dfrac{\vec i+3\vec{j}-2\vec k+3\vec{i}+\vec{j}-2\vec{k}}{2}$$

    $$C= 2(\hat{i}+\hat{j}-\hat{k})$$

  • Question 10
    1 / -0
    If $$\overline{p}$$ is the position vector of the orthocentre and $$\overline{g}$$ is the position vector of the centroid of the triangle $$ABC$$ when circumcenter is the origin and if $$\overline{p}=\lambda\overline{g}$$ then $$\lambda=$$
    Solution
    Let $$a,b,c$$ be position vectors of $$A,B,C$$ respectively.
    $$\bar{p}$$ is the position vector of orthocentre and $$\bar{g}$$ is the position vector of the centroid.
    $$\implies \bar{p}=\bar{a}+\bar{b}+\bar{c}$$ and $$\bar{g}=\dfrac{\bar{a}+\bar{b}+\bar{c}}{3}$$ 
    $$\implies \vec{g} = \dfrac{\vec{p}}{3}\ \ (section\ formula)$$
    $$\implies \bar{g}$$ trisect $$\bar{p}$$
    $$\implies \vec{p} = 3\vec{g}$$
    $$\implies \vec{p} = \lambda\vec{g}$$, where $$\lambda=3$$.
    Hence, option A is correct.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now