Self Studies

Vector Algebra Test - 17

Result Self Studies

Vector Algebra Test - 17
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Six vectors, a through f have the magnitudes and directions indicated in the figure. Which of the following statements is true?

    Solution
    Consider the problem 
    The $$f$$ vector has the resultant of any two other vector.
    By parallelogram law of vector addition.
     Let $$f$$ be the resultant between $$d$$ and $$e$$
    Therefore, 
    $$d+e=f$$
  • Question 2
    1 / -0
    If $$2\vec{a}+3\vec{b}-5\vec{c}=\vec{0}$$, then ratio in which $$\vec{c}$$ divides $$\vec{AB}$$ is
    Solution
    Given, $$2\vec{a}+3\vec{b}-5\vec{c}=0$$
    $$\Rightarrow \displaystyle\frac{2\vec{a}+3\vec{b}}{5}=\vec{c}$$
    $$\Rightarrow \displaystyle\frac{2\vec{a}+3\vec{b}}{2+3}=\vec{c}$$
    $$\Rightarrow \displaystyle\frac{\vec{a}+\displaystyle\frac{3}{2}\vec{b}}{1+\displaystyle\frac{3}{2}}=\vec{c}$$                .........$$(i)$$
    Let $$\vec{c}$$ divide $$\vec{AB}$$ in the ratio $$\lambda :1$$
    Then, $$\vec{c}=\displaystyle\frac{\vec{a}+\lambda \vec{b}}{1+\lambda}$$    ....$$(ii)$$
    On comparing Eqs. $$(i)$$ and $$(ii)$$, we get $$\lambda=\displaystyle\frac{3}{2}$$
    $$\therefore$$ Required ratio is $$3:2$$ internally.
  • Question 3
    1 / -0
    Let $$ABCD$$ be a parallelogram whose diagonals intersect at $$P$$ and $$O$$ be the origin, then $$\vec { OA } +\vec { OB } +\vec { OC } +\vec { OD } $$ equals
    Solution
    Consider the problem 
    Since 
    $$P$$ which is the intersection of diagonals of parallelogram its bisects the diagonal 
    Thus 
    $$OP=\frac{(OA+OC)}{2}$$
    i.e.
    $$OA+OC=2\,OP$$    -----  (i)
    Similarly 
    $$OB+OD=OP$$    -----   (ii)

    Adding (i) and (ii)
    we get 
    $$\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD}  = 4\overrightarrow {OP} $$

    Hence the option $$D$$ is the correct answer.
  • Question 4
    1 / -0
    The projection of $$\displaystyle \overset { \rightarrow  }{ a } =2\overset { \wedge  }{ i } +3\overset { \wedge  }{ j } -2\overset { \wedge  }{ k } $$ on $$\displaystyle \overset { \rightarrow  }{ b } =\overset { \wedge  }{ i } +2\overset { \wedge  }{ j } +3\overset { \wedge  }{ k } $$ is:
    Solution
    Projection of  $$\displaystyle \overset { \rightarrow  }{ a } =2\overset { \wedge  }{ i } +3\overset { \wedge  }{ j } -2\overset { \wedge  }{ k } $$ on $$\displaystyle \overset { \rightarrow  }{ b } =\overset { \wedge  }{ i } +2\overset { \wedge  }{ j } +3\overset { \wedge  }{ k } $$ is
    $$=\dfrac{\vec{a}\cdot \vec{b}}{|\vec{b}|}=\dfrac{2}{\sqrt {14}}$$
  • Question 5
    1 / -0
    If $$\vec {a}$$ is a nonzero vector of magnitude $$'a'$$ and $$\lambda$$ a nonzero scalar, then $$\lambda{\vec {a}}$$ is unit vector if
    Solution
    Vector $$\lambda \vec {a}$$ is a unit vector if $$|\lambda \vec {a}|=1$$.
    Now,
    $$|\lambda \vec {a}|=1$$
    $$\Rightarrow |\lambda||\vec {a}|=1$$
    $$\Rightarrow |\vec {a}|=\dfrac {1}{|\lambda|}, \; [\lambda \neq 0]$$
    $$\Rightarrow a=\dfrac {1}{|\lambda|},  \; [\because |\vec {a}|=a]$$
    Hence, vector $$\lambda \vec {a}$$ is a unit vector if $$a=\dfrac {1}{|\lambda|}$$
    Thus the correct answer is $$D$$.
  • Question 6
    1 / -0
    Find $$u+v$$, when $$u=(3,4,-2)$$ and $$v=(0,-4,0)$$.
    Solution
    Given points 
    $$u(3,4,-2)$$ and $$v(0,-4,0)$$
    $$\vec{u}=3\hat{i}+4\hat{j}-2\hat{k}$$
    $$\vec{v}=-4\hat{j}$$
    vector 
    $$\vec{u}+\vec{v}=3\hat{i}+4\hat{j}-2\hat{k}-4\hat{j}$$
    $$\vec{u}+\vec{v}=3\hat{i}-2\hat{k}=(3,0,-2)$$

  • Question 7
    1 / -0
    Find the vector $$w$$ with the initial point $$(9,4)$$ and final point $$(12,6)$$.
    Solution
    Given end points 
    $$A(9,4)$$ and $$B(12,6)$$
    $$\vec{OA}=9\hat{i}+4\hat{j}$$
    $$\vec{OB}=12\hat{i}+6\hat{j}$$
    vector w from A to B  
    $$\vec{AB}=\vec{OB}-\vec{OA}$$
    $$\vec{w}=12\hat{i}+6\hat{j}-(9\hat{i}+4\hat{j})$$
    $$\vec{w}=12\hat{i}+6\hat{j}-9\hat{i}-4\hat{j}$$
    $$\vec{w}=3\hat{i}+2\hat{j}$$
    $$=(3,2)$$

  • Question 8
    1 / -0
    Give the vector from $$(2,-7,0)$$ to $$(1,-3,-5)$$.
    Solution
    Given points 
    $$A(2,-7,0)$$ and $$B(1,-3,-5)$$
    $$\vec{OA}=2\hat{i}-7\hat{j}$$
    $$\vec{OB}=\hat{i}-3\hat{j}-5\hat{k}$$
    vector from A to B 
    $$\vec{AB}=\vec{OB}-\vec{OA}$$
    $$\vec{AB}=\hat{i}-3\hat{j}-5\hat{k}-(2\hat{i}-7\hat{j})$$
    $$\vec{AB}=\hat{i}-3\hat{j}-5\hat{k}-2\hat{i}+7\hat{j}$$
    $$\vec{AB}=-\hat{i}+4\hat{j}-5\hat{k}$$
    $$AB=(-1,4,-5)$$

  • Question 9
    1 / -0
    Find the vector which joins the point A$$(4,5,6)$$ to B$$(10,11,12)$$.
    Solution
    Given points 
    $$A(4,5,6)$$ and $$B(10,11,12)$$
    $$\vec{OA}=4\hat{i}+5\hat{j}+6\hat{k}$$
    $$\vec{OB}=10\hat{i}+11\hat{j}+12\hat{k}$$
    vector 
    $$\vec{AB}=\vec{OB}-\vec{OA}$$
    $$\vec{AB}=10\hat{i}+11\hat{j}+12\hat{k}-(4\hat{i}+5\hat{j}+6\hat{k})$$
    $$\vec{AB}=10\hat{i}+11\hat{j}+12\hat{k}-4\hat{i}-5\hat{j}-6\hat{k}$$
    $$\vec{AB}=6\hat{i}+6\hat{j}+6\hat{k}$$


  • Question 10
    1 / -0
    Give the vector from $$(1,-3,-5)$$ to $$(2,-7,0)$$.
    Solution
    Given points 
    $$A(1,-3,-5)$$ and $$B(2,-7,-0)$$
    $$\vec{OA}=\hat{i}-3\hat{j}-5\hat{k}$$
    $$\vec{OB}=2\hat{i}-7\hat{j}$$
    vector from $$A$$ to $$B$$ 
    $$\vec{AB}=\vec{OB}-\vec{OA}$$
    $$\vec{AB}=2\hat{i}-7\hat{j}-(\hat{i}-3\hat{j}-5\hat{k})$$
    $$\vec{AB}=2\hat{i}-7\hat{j}-\hat{i}+3\hat{j}+5\hat{k}$$
    $$\vec{AB}=\hat{i}-4\hat{j}+5\hat{k}$$
    $$AB=(1,-4,5)$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now