Self Studies

Vector Algebra Test - 23

Result Self Studies

Vector Algebra Test - 23
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The unit vector in the direction of $$\overrightarrow{a}$$ is 
    Solution
    Consider the given vector $$\vec a$$.

    Unit vector $$\hat a=\dfrac{\vec a}{|\vec a|}$$

    Hence, this is the answer.
  • Question 2
    1 / -0
    If $$\vec{a}$$ be the position vector whose tip is (5,-3), find the coordinates of a point B such that $$ \vec{AB} = \vec{a},$$ the coordinates of A being (4,-1).
    Solution
    $$\vec{a}$$ is position vector of $$(5, -3)$$
    $$\vec{a}=5\hat{i}-3\hat{j}$$
    Coordinates of $$A=(4, -1)$$
    $$\vec{OA}=4\hat{i}-\hat{j}$$
    $$\vec{AB}=\vec{a}=5\hat{i}-3\hat{j}$$
    $$\vec{OB}-\vec{OA}=5\hat{i}-3\hat{j}$$
    $$\Rightarrow \vec{OB}=5\hat{i}-3\hat{j}+\vec{OA}$$
    $$=5\hat{i}-3\hat{j}+4\hat{i}-3\hat{j}$$
    $$=a\hat{i}-4\hat{j}$$
    $$\vec{OB}=9\hat{i}-4\hat{j}$$
    Coordinates of point B$$=(9, -4)$$.
  • Question 3
    1 / -0
    find the coordinate of the tip of the position vector which is equivalent to $$ \vec{AB}$$, where the coordinates of A and B are (-1, 3) and (-2, 1) respectively.
    Solution
    $$A(-1, 3)$$
    $$B(-2, 1)$$
    'O' be the origin
    $$\vec{OA}=-\hat{i}+3\hat{j}$$; $$\vec{OB}=-2\hat{i}+\hat{j}$$
    $$\vec{AB}=\vec{OB}-\vec{OA}=(-2\hat{i}+\hat{j})-(-\hat{i}+3\hat{j})$$
    $$=-2\hat{i}+\hat{j}+\hat{i}-3\hat{j}$$
    $$=-\hat{i}-2\hat{j}$$
    $$\therefore$$ Coordinates $$=(-1, -2)$$.
  • Question 4
    1 / -0
    If the position vectors of the points $$A(3,4),B(5, -6)$$ and $$C(4,-1)$$ are $$ \vec{a}, \vec{b}, \vec{c}$$ respectively, compute $$ \vec{a}+2\vec{b}-3\vec{c}. $$
    Solution
    Position vectors of points
    $$A(3, 4), B(5, -6), C(-4, -1)$$ are $$\vec{a}, \vec{b}, \vec{c}$$
    $$\vec{a}=3\hat{i}+4\hat{j}$$
    $$\vec{b}=5\hat{i}-6\hat{j}$$
    $$\vec{c}=4\hat{i}-\hat{j}$$
    $$\vec{a}+2\vec{b}-3\vec{c}=3\hat{i}+4\hat{j}+2(5\hat{i}-6\hat{j})-3(4\hat{i}-\hat{j})$$
    $$=3\hat{i}+4\hat{j}+10\hat{i}-12\hat{j}-12\hat{i}+3\hat{j}$$
    $$=\hat{i}-5\hat{j}$$
    $$\vec{a}+2\vec{b}-3\vec{c}=\hat{i}-5\hat{j}$$.
  • Question 5
    1 / -0
    If $$\vec a$$ is parallel to $$\vec b \times \vec c$$, then $$(\vec a \times \vec b) \cdot (\vec a \times \vec c)$$ is equal to
    Solution
    $$(\vec a \times \vec b) \cdot (\vec a \times \vec c) = (\vec a \times \vec b) \cdot \vec u = \vec a \times \vec c$$
    $$\Rightarrow  \vec a \cdot (\vec b \times \vec u) = \vec a \cdot [\vec b \times (\vec a \times \vec c)]$$
                            $$ = \vec a \cdot [(\vec b \cdot \vec c) \vec a - (\vec a \cdot \vec b) \vec c]$$
                            $$ = \vec a \cdot (\vec b \cdot \vec c) \vec a $$               $$(\because  \vec a \cdot \vec b = 0)$$
                            $$ = \mid \vec a\mid^2 (\vec b \cdot \vec c)$$ 
  • Question 6
    1 / -0
    If $$\mid \vec a \mid = 2$$ and $$\mid \vec b \mid = 3$$ and $$\vec a \cdot \vec d = 0$$, then $$(\vec a \times (\vec a \times (\vec a \times (\vec a \times \vec b ))))$$ is equal to
    Solution
    $$(\vec a \times (\vec a \times (\vec a \times (\vec a \times \vec b )))) = (\vec a \times ( \vec a \times ((\vec a \cdot \vec b) \vec a - (\vec a \cdot \vec b) \vec b)))$$
                                              $$ = (\vec a \times (\vec a \times (- 4 \vec b)))$$
                                              $$ = -4 (\vec a \times(\vec a \times \vec b))$$
                                              $$ = -4((\vec a \cdot \vec b) \vec a - (\vec a \cdot \vec a)\vec b)$$
                                              $$ = -4(-4 \vec b) = 16 \vec b = 48 \hat b$$
  • Question 7
    1 / -0
    Let $$\mathrm{A}\mathrm{B}\mathrm{C}$$ be a triangle and let $$\mathrm{D},\mathrm{E}$$ be the midpoints of the sides $$\mathrm{A}\mathrm{B},\mathrm{A}\mathrm{C}$$ respectively,then $$\hat { BE } +\hat { DC } =$$
    Solution
    Since, $$D$$ and $$E$$ are the mid points of the sides $$AB$$ and $$AC$$
    Therefore, $$OD=\dfrac{OA+OB}{2}$$ and $$OE=\dfrac{OA+OC}{2}$$
    $$Now, BE+DC\\=OE-OB+OC-OD=OC-OB+\dfrac{OC-OB}{2}\\=\dfrac{3(OC-OB)}{2}=\dfrac{3BC}{2}$$
  • Question 8
    1 / -0
    The position vectors of $$A,B,C$$ are $$\overline{i}+\overline{j}+\overline{k},\ 4\overline{i}+\overline{j}+\overline{k},\ 4\overline{i}+5\overline{j}+\overline{k}$$ . Then the position vector of the circumcentre of the triangle $$ABC$$ is
    Solution

    Position vector of $$A$$ is $$\hat i+\hat j+\hat k$$, gives coordinates as $$(1,1,1)$$.

    Position vector of $$B$$ is $$4\hat i+\hat j+\hat k$$, gives coordinates as $$(4,1,1)$$.
    Position vector of $$C$$ is $$4\hat i+5\hat j+\hat k$$, gives coordinates as $$(4,5,1)$$.

    $$\vec{AB} = \vec B - \vec A = 3\hat i$$
    $$\vec {BC} = \vec C - \vec B = 4\hat j$$
    $$\vec {AC} = \vec C - \vec A = 3\hat i+4\hat j$$
    Here, we can see that $$\triangle ABC$$ is a right angled triangle with right angle at $$B$$.

    Hence, circumcenter will be the midpoint of $$AC$$.
    Mid point of $$AC = D\equiv\left(\dfrac{1+4}2 , \dfrac{1+5}2, \dfrac{1+1}2\right) = \left(\dfrac52,3,1\right)$$
    So, position vector of $$D$$ will be
    $$\dfrac12(5\hat i+6\hat j+2\hat k)$$
    which is a circumcenter.

  • Question 9
    1 / -0
     If $$\mathrm{O}$$ is the circumcentre and $$\mathrm{O}^{'}$$ is the orthocentre of a triangle $$\mathrm{A}\mathrm{B}\mathrm{C}$$ and if $$\mathrm{A}\mathrm{P}$$ is the circumdiameter then
    $$\vec{\mathrm{A}\mathrm{O}}+\vec{\mathrm{O}^{'}\mathrm{B}}+\vec{\mathrm{O}^{'}\mathrm{C}}=$$
    Solution
    $$\left | \vec{AP} \right |=2\left | AO \right |$$
    $$=O'B+O'C+O'A-O'A+AO'$$
    $$=(\bar{A}+\bar{B}+\bar{C}-3 \ \bar{O'})+2\ \overline{AO'}$$
    So use $$3\ \overline{OS}=2\ \overline{OC}$$
    where $$S$$ is centroid
    $$C$$ is circumcentre
    $$O$$ is orthocenter
    $$=3(\dfrac{\bar{A}+\bar{B}+\bar{C}-\bar{O'}}{3})+2\overline{AO'}$$
    $$=2\ \overline{O'O}+2\ \overline{AO'}$$
    $$=2\ \overline{AO}$$
    $$=\overline{AP}$$
  • Question 10
    1 / -0
    If the vectors  $$\overline{a}=3\overline{i}+\overline{j}-2\overline{k}$$,$$\overline{b}=-\overline{i}+3\overline{j}+4\overline{k},\ \overline{c}=4\overline{i}-2\overline{j}-6\overline{k}$$  form the sides of the triangle then length of the median bisecting the vector $${c}$$ is
    Solution

    $$\vec a = 3\hat i+\hat j -2\hat k = \vec {BC}$$

    $$\vec b = -\hat i+3\hat j+4\hat k=\vec{AC}$$
    $$\vec c = 4\hat i-2\hat j-6\hat k = \vec{AB}$$

    $$|\vec a|^2 = (3^2+1^2+2^2) = 14$$

    $$|\vec b|^2 = 1^2+3^2+4^2 = 26$$

    $$|\vec c|^2 = 4^2+2^2+6^2 = 56$$

    Length of median through vertex $$C$$ passing through $$AC$$:
    $$L = \dfrac12\sqrt{2(a^2+b^2)-c^2}$$

    $$L = \dfrac12\sqrt{2(14+26) - 56} = \dfrac12\sqrt{24} = \sqrt6$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now