Self Studies

Vector Algebra Test - 28

Result Self Studies

Vector Algebra Test - 28
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In a triangle $$ABC, D$$ and $$E$$ are points on $$BC$$ and $$AC$$ respectively, such that $$BD=2DC, AE=3EC,$$ Let $$P$$ be the point of intersection of $$AD$$ and $$BE$$. Then $$\dfrac{BE}{PE}=$$
    Solution
    Let p.v of $$\vec{a}=\vec{a}$$
           p.v of $$\vec{B}=\vec{b}$$
           p.v of $$\vec{C}=\vec{c}$$
    p.v of $$E=\dfrac{3\vec{c}}{4}$$
    p.v of $$D=\dfrac{3\vec{c}}{4}$$
    $$=\dfrac{2\vec{c}+\vec{b}}{3}$$
    $$p$$ lie on line $$AD$$ so p.v of $$p=b\left ( \dfrac{2\hat{c}+\hat{b}}{3} \right )$$..............(1)
    Let $$\dfrac{BP}{PA}=K$$
    So p.v of $$p=\dfrac{K\dfrac{3\hat{c}}{4}+\hat{b}}{K+1}$$.............(2)
    equate (1) and (2)
    $$K=\dfrac{8}{3}$$
  • Question 2
    1 / -0
    If $$\overline{a}+\overline{b}+\overline{c}=\alpha\overline{d},\overline{b}+\overline{c}+\overline{d}=\beta\overline{a}$$, then $$\overline{a}+\overline{b}+\overline{c}+\overline{d}$$ is 
    Solution

  • Question 3
    1 / -0
    If $$OABC$$ is a parallelogram with $$\vec{OB}=\vec{a},\vec{AB}=\vec{b}$$ then $$\vec{OA}=$$
    Solution
    From figure we get 
     $$\overrightarrow{OA}+\overrightarrow{AB}=\overrightarrow{OB}$$
    $$\overrightarrow{OA}=\vec{a}-\vec{b}$$

  • Question 4
    1 / -0
    Let us define, the length of a vector $$a\overline{i}+b\overline{j}+c\overline{k}$$ as $$|{a}|+|{b}|+|{c}|$$. This definition coincides with the usual definition of the length of a vector $$a\overline{i}+b\overline{j}+c\overline{k}$$ if
    Solution
    The definitions will coincides if $$|a|+|b|+|c|=\sqrt{a^2+b^2+c^2}$$
    $$\Rightarrow a^2+b^2+c^2+2(|a||b|+|b||c|+|c||a|)=a^2+b^2+c^2$$, square both sides 
    $$\Rightarrow |a||b|+|b||c|+|c||a|=0$$
    Clearly above equation will satisfy if any two of $$a,b,c$$ are zero.
  • Question 5
    1 / -0
    In $$\Delta ABC,\ D,\ E,\ F$$ are midpoints of the sides $$BC, CA$$ and $$AB$$ respectively. $$O$$' is the circumcentre, $$G$$' is the centroid, $$H$$' is the orthocentre and $$P$$ is any point.
    Match the following
    List IList II
    $$1) \vec{PA} +\vec{PB}+\vec{PC}$$$$a) $$$$0$$
    $$2)\vec {GA}+\vec{GB}+\vec{GC}$$$$b) \vec{OH}$$
    $$3)\displaystyle \vec{AD}+\dfrac{2}{3}\vec{BE}+\dfrac{1}{3}\vec{CF}$$$$c)\vec{ PD}+\vec{PE}+\vec{PF}$$
    $$4)\vec{OA}+\vec{OB}+\vec{OC}$$$$d){\displaystyle\dfrac{1}{2}}\vec{AC}$$
    Solution
    1. Since there is an arbitrary point $$P$$ in the question, the answer needs to be dependent on $$P$$ and so, there's only one option which has that, implying the answer to be $$c$$.
    2. $$G = \dfrac{a + b + c}{3}$$ where $$a,b,c$$ are the position vectors of $$A,B,C$$ respectively.
     Thus, $$\vec {GA} + \vec{ GB} + \vec {GC} = G - a + G - b + G - c = 3G - a - b - c = 0$$
    3. We have $$D = \dfrac{b + c}{2}, E = \dfrac{c + a}{2}, F = \dfrac{a + b}{2}$$
    Thus, $$\vec{AD} + \dfrac{2}{3}\vec{BE} + \dfrac{1}{3}\vec{CF} = D - a + \dfrac{2}{3}E - \dfrac{2}{3}b + \dfrac{1}{3}F - \dfrac{1}{3}c$$
     $$= \dfrac{1}{6}\left[3b + 3c - 6a + 2c + 2a - 4b + a + b - 2c \right] = \dfrac{1}{2}\left[c - a\right]$$, hence option $$d$$.
    4. Option $$b$$ is the remaining option!
  • Question 6
    1 / -0
    Vector area is a vector quantity associated with each plane figure whose magnitude is
    Solution
    By definition, the magnitude of vector area of a plane is equal to the area of the plane and has a direction, parallel to the direction of the normal of the plane, i.e. perpendicular to the plane.
  • Question 7
    1 / -0
    Let $$OABC$$ be a parallelogram and $$D$$ the midpoint of $$OA$$. The ratio in which $$OB$$ divides $$CD$$ in the ratio
    Solution
    P.v. of $$D =\dfrac{\vec{a}}{2}$$
    P.v. of $$E=\dfrac{\lambda (\vec{b}+\vec{a})}{}$$
    Let $$E$$ divide $$CD$$ in ratio $$K:1$$
    P.v. of $$E=\dfrac{K\dfrac{\vec{a}}{2}+\vec{b}}{K+1}$$
    $$\lambda (\vec{b}+\vec{a})=\dfrac{\dfrac{k\vec{a}}{2}+\vec{b}}{k+1}$$
    $$\lambda =\dfrac{1}{k+1}   \lambda =\dfrac{k}{2k+1}$$
    So $$ K=2$$

  • Question 8
    1 / -0
    In $$\Delta OAB$$, if $$\vec{OA}=\vec{a},\ \vec{OB}=\vec{b}.  L$$ is mid point of $$\vec{OA}$$ and $$M$$ is point on $$\vec{OB}$$ such that $$\vec{OM}:\vec{MB}=2:1$$. If $$P$$ is mid point of $$LM$$ then $$\vec{AP}=$$
    Solution
    P.v. of $$ L=\dfrac{\vec{a}}{2}$$ (mid point of $$\vec{OA}$$)
    P.v. of $$M=\dfrac{2\vec{b}}{3}$$ (use section formula)
    p.v. of $$P=\dfrac{\dfrac{a}{2}+\dfrac{2\vec{b}}{3}}{2}$$  (mid point of LM)
    $$\vec{AP}=\dfrac{\vec{a}}{4}+\dfrac{\vec{b}}{3}-\vec{a}$$
    $$=\dfrac{-3\vec{a}}{4}+\dfrac{\vec{b}}{3}$$

  • Question 9
    1 / -0
    If the vectors $$\vec{c},\vec{a}=x\hat{i}+y\hat{j}+z\hat{k}$$ and $$\vec{b}=\hat{j}$$ are such that $$\vec{a},\vec{c}$$ and $$\vec{b}$$ form a right handed system, then $$\vec{c}=$$
    Solution
    $$\vec{b}\times \vec{a}=\vec{c}$$  (as it follow RHS)
    $$\vec{b}\times \vec{a}=\begin{vmatrix}
    \hat{i} & \hat{j} & \hat{k}\\
    0 & 1 & 0\\
    x & y & z
    \end{vmatrix}=z\hat{i}-x\hat{k}=\vec{c}$$
  • Question 10
    1 / -0
    The vector $$\vec{AB}=3\hat{i}+4\hat{k}$$ and $$\vec{AC}=5\hat{i}-2\hat{j}+4\hat{k}$$ are the sides of a $$\Delta ABC$$ where $$A$$ is the origin. The length of median through $${A}$$ is
    Solution
    Let $$A$$ be the origin. 
    $$D$$ is mid of $$BC=(4,-1,4)$$
    So Length $$AD=\sqrt{16+16+1}$$
    $$=\sqrt{33}$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now