Self Studies

Inverse Trigonometric Functions Test - 29

Result Self Studies

Inverse Trigonometric Functions Test - 29
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\displaystyle \tan^{-1}\left [ \cfrac{\cos\:x}{1+\sin\:x} \right ]$$ is equal to 
    Solution
    $$ \displaystyle \tan^{-1}\left[\frac{\sin(\frac{\pi}{2}-x)}{1+\cos(\frac{\pi}{2}-x)}\right]$$

    $$ \displaystyle = \tan^{-1}\left[\cfrac{2\sin(\frac{\pi}{4}-\frac{x}{2}).\cos(\frac{\pi}{4}-\frac{x}{2})}{2\cos^{2}(\frac{\pi}{4}-\frac{x}{2})}\right]$$

    $$ \displaystyle =\tan^{-1}\left[\tan(\frac{\pi}{4}-\frac{x}{2})\right]$$
    $$ \displaystyle =\cfrac{\pi}{4}-\frac{x}{2}$$
    where,
    $$ \displaystyle -\frac { \pi  }{ 2 } < \frac { \pi  }{ 4 } -\frac { x }{ 2 } < \frac { \pi  }{ 2 } \\ \displaystyle \Rightarrow -\frac { \pi  }{ 2 } < x < \frac { 3\pi  }{ 2 } $$
  • Question 2
    1 / -0
    The value of $$\displaystyle tan(sin^{-1}(cos(sin^{-1}x)))tan(cos^{-1}(sin(cos^{-1}x)))$$, where $$x\:\epsilon\:(0,1)$$, is equal to 
    Solution
    $$cos sin^{-1} x = \sqrt{1-x^2} $$
    $$ tan sin ^{-1} (\sqrt{1-x^2}) = \dfrac{\sqrt{1-x^2}}{x} $$

    $$sin (cos^{-1}x ) = \sqrt{1-x^2} )$$
    $$tan cos^{-1} (\sqrt{1-x^2}) = \dfrac{x}{\sqrt{1-x^2}}$$

    Hence, option B is correct. 
  • Question 3
    1 / -0
    The value of $$\displaystyle sin^{-1}(x^{2}-4x+6)+cos^{-1}(x^{2}-4x+6)$$ for all $$x\:\epsilon\:R$$ is
    Solution
    $$\sin^{-1}(x)\epsilon[-1,1]$$
    Therefore 
    $$-1\leq x^{2}-4x+6\leq 1$$
    $$-1\leq (x-2)^{2}-4+6\leq 1$$
    $$-1\leq (x-2)^{2}+2\leq 1$$
    $$-3\leq (x-2)^{2}\leq -1$$
    Now, $$(x-2)^{2}>0$$ for all $$x\epsilon R$$.
    Hence the inequality
    $$-3\leq (x-2)^{2}\leq -1$$ yields no real real values of x.
    Therefore, 
    $$|x^{2}-4x+6|$$ cannot be less than or equal to 1.
    Hence $$\sin^{-1}(x^{2}-4x+6)$$ is no possible.
    The, same goes for $$\cos x$$.
    Hence the answer is none of these.
  • Question 4
    1 / -0
    Which of the following is the solution set of the equation $$\displaystyle 2cos^{-1}x=cot^{-1}\left(\frac{2x^{2}-1}{2x\sqrt{1-x^{2}}}\right)$$
    Solution
    $$2{ cos }^{ -1 }x={ cos }^{ -1 }\left( { 2 }x^{ 2 }-1 \right) $$ for $$x\epsilon \left[ 0,1 \right] $$
    And $${ cos }^{ -1 }\left( { 2 }x^{ 2 }-1 \right) ={ cot }^{ -1 }\left( \cfrac { { 2 }x^{ 2 }-1 }{ 2x\sqrt { 1-{ x }^{ 2 } }  }  \right) $$ for $$x\epsilon \left( 0,1 \right) $$
  • Question 5
    1 / -0
    If $$\displaystyle \cos^{-1} x = a + \tan^{-1} \frac{\sqrt{1 - x^{b}}}{cx}$$ for $$\displaystyle x < 0$$.
    Find the value of a ,b and c.
    Solution
    Let $$x = \cos \theta $$

    $$\Rightarrow \tan \theta = \cfrac{\sin\theta}{\cos\theta}=\cfrac{\sqrt{1-x^2}}{x}$$  (i)

    $$\therefore \cos^{-1}x = \pi+\theta $$        since $$x< 0$$

                       $$= \pi+\tan^{-1}\cfrac{\sqrt{1-x^2}}{x}$$ using (i)
    Comparing with
    $$\displaystyle \cos^{-1} x = a + \tan^{-1} \frac{\sqrt{1 - x^{b}}}{cx}$$ for $$x<0$$

    $$a=\pi, b=2 ,c=1$$
  • Question 6
    1 / -0
    The equation $$\displaystyle 3cos^{-1}x-\pi\:x-\frac{\pi}{2}=0$$ has
    Solution
    Substituting $$x=\frac{1}{2}$$ , we get
    $$3cos^{-1}(\frac{1}{2})-\frac{\pi}{2}-\frac{\pi}{2}$$
    $$=3(\frac{\pi}{3})-\pi$$
    $$=0$$
    Hence there is one positive real solution to the above equation since range of $$cos^{-1}(x)\epsilon[\pi,0]$$.
  • Question 7
    1 / -0
    $$\sin ^{ -1 }{ \left( \cos { \left( \sin ^{ -1 }{ x }  \right)  }  \right)  } +\cos ^{ -1 }{ \left( \sin { \left( \cos ^{ -1 }{ x }  \right)  }  \right)  } $$ is equal to
    Solution
    We have $$\sin ^{ -1 }{ \left( \cos { \left( \sin ^{ -1 }{ x }  \right)  }  \right)  } +\cos ^{ -1 }{ \left( \sin { \left( \cos ^{ -1 }{ x }  \right)  }  \right)  } $$
    $$\displaystyle =\sin ^{ -1 }{ \left[ \cos { \left( \frac { \pi  }{ 2 } -\cos ^{ -1 }{ x }  \right)  }  \right]  } +\cos ^{ -1 }{ \left[ \sin { \left( \frac { \pi  }{ 2 } -\sin ^{ -1 }{ x }  \right)  }  \right]  } $$
    $$\displaystyle  =\sin ^{ -1 }{ \left[ \sin { \left( \cos ^{ -1 }{ x }  \right)  }  \right]  } +\cos ^{ -1 }{ \left[ \cos { \left( \sin ^{ -1 }{ x }  \right)  }  \right]  } $$
    $$\displaystyle =\sin ^{ -1 }{ x } +\cos ^{ -1 }{ x } =\frac { \pi  }{ 2 } $$

  • Question 8
    1 / -0
    The number of real solution of the equation $$\displaystyle \sqrt{1+cos2x}=\sqrt{2}sin^{-1}(sin\:x),-\pi< x\leq \pi$$, is
    Solution
    Given equation is,
    $$\\ \sqrt { 1+\cos 2x } =\sqrt { 2 } sin^{ -1 }\left( \sin\: x \right) \\ \Rightarrow \sqrt { 1+{ \cos }^{ 2 }x-{\sin }^{ 2 }x } =\sqrt { 2 } x\\ \Rightarrow \sqrt { 2{ \cos }^{ 2 }x } =\sqrt { 2 } x\\ \Rightarrow \pm \sqrt { 2 } \cos x=\sqrt { 2 } x\\ \Rightarrow \cos x=\pm 1\\ x=0,\pi $$
  • Question 9
    1 / -0
    There exists a positive real number $$x$$ satisfying $$\displaystyle \cos(\tan^{-1}x)=x$$. Then the value of $$\displaystyle \cos^{-1}\left(\frac{x^{2}}{2}\right)$$ is 
    Solution
    $$\displaystyle \cos(\tan^{-1}x)=x\Rightarrow \tan^{-1}x = \cos^{-1}x$$
    $$\displaystyle \Rightarrow \cos^{-1}\frac{1}{\sqrt{1+x^2}} = \cos^{-1}x\Rightarrow x^2(1+x^2) = 1$$
    $$\Rightarrow x^2 = \cfrac{-1+\sqrt{5}}{2}\Rightarrow \cfrac{x^2}{2} = \cfrac{\sqrt{5}-1}{4} = \cos\cfrac{2\pi}{5}$$
    $$\therefore \cos\left(\cfrac{x^2}{2}\right) = \cfrac{2\pi}{5}$$
  • Question 10
    1 / -0
    The value of $$\displaystyle \lim_{|x|\to\infty}cos(tan^{-1}(sin(tan^{-1}x)))$$ is equal to 
    Solution
    $$lim_{|x|\rightarrow \infty}cos(tan^{-1}(sin(tan^{-1}(x))))$$
    $$=cos(tan^{-1}(sin(\dfrac{\pi}{2})))$$
    $$=cos(tan^{-1}(1))$$
    $$=cos(\dfrac{\pi}{4})$$
    $$=\dfrac{1}{\sqrt{2}}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now