Self Studies

Inverse Trigonometric Functions Test - 41

Result Self Studies

Inverse Trigonometric Functions Test - 41
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Number of solution(s) to the equation$$ $$ $${\cos ^{ - 1}}x + {\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) = \dfrac{\pi }{6}\,$$ is/are 
    Solution
    Hence,
    option $$(B)$$ is correct answer.

  • Question 2
    1 / -0
    $$\displaystyle \sum^{\infty}_{r=1}\tan^{-1}\left(\dfrac {3}{r^{2}-r+9}\right)$$ is -
  • Question 3
    1 / -0
    $$If\,\cos \left( {2{{\sin }^{ - 1}}x} \right) = \frac{1}{9},\,then\,\,x\,\,is\,\,equal\,\,to$$
    Solution

  • Question 4
    1 / -0
    If $${ cos }^{ -1 }\dfrac { 3 }{ 5 } -{ sin }^{ -1 }\dfrac { 4 }{ 5 } ={ cos }^{ -1 }x$$, then x is equal to -
    Solution
    Given,

    $$\cos ^{-1}\dfrac{3}{5}+\sin^{-1}\dfrac{4}{5}=\cos ^{-1}x$$

    apply $$\cos$$ on both sides, we get,

    $$\cos \left ( \cos ^{-1}\dfrac{3}{5}+\sin^{-1}\dfrac{4}{5} \right )=\cos (\cos ^{-1}x)$$

    $$\mathrm{Use\:the\:following\:identity}:\quad \cos \left(s+t\right)=\cos \left(s\right)\cos \left(t\right)-\sin \left(s\right)\sin \left(t\right)$$

    $$\cos \left(\cos ^{-1} \left(\dfrac{3}{5}\right)\right)\cos \left(\sin^{-1} \left(\dfrac{4}{5}\right)\right)-\sin \left(\cos ^{-1} \left(\dfrac{3}{5}\right)\right)\sin \left(\sin^{-1} \left(\dfrac{4}{5}\right)\right)=x$$

    $$\dfrac{3}{5}\left ( \sqrt{1-\left (\dfrac{4}{5}  \right )^2} \right )-\dfrac{4}{5}\left ( \sqrt{1-\left (\dfrac{3}{5}  \right )^2} \right )=x$$

    $$\dfrac{3}{5}\times \dfrac{3}{5}-\dfrac{4}{5}\times \dfrac{4}{5}=x$$

    $$\dfrac{9}{25}-\dfrac{16}{25}=x$$

    $$\therefore x=-\dfrac{7}{25}$$
  • Question 5
    1 / -0
    Number of solution of the equation $$\tan^{-1}\left(\dfrac {1}{x-1}+\dfrac {1}{x-2}+\dfrac {1}{x-3}+\dfrac {1}{x-4} \right)+\cos^{-1}(x)=\dfrac {3\pi}{4}-\sin^{-1}(x)$$ are
    Solution

  • Question 6
    1 / -0
    The range of the function $$f(x)=\ell n\ (\sin^{-1}(x^{2}+x))$$ is
    Solution

  • Question 7
    1 / -0
    If $$f(x)=\cos^{-1}\left(\dfrac {\sqrt {2x^{2}+1}}{x^{2}+1}\right)$$, then range of $$f(x)$$ is
    Solution
    Given,

    $$f\left(x\right)=\cos ^{-1}\left(\dfrac{\sqrt{2x^2+1}}{x^2+1}\right)$$

    Range of $$\dfrac{\sqrt{2x^2+1}}{x^2+1}$$

    $$0< f(x)\leq1$$

    $$\cos^{-1}(1)\leq \cos ^{-1}\left(\dfrac{\sqrt{2x^2+1}}{x^2+1}\right)<\cos^{-1}(0)$$

    $$0\leq \cos ^{-1}\left(\dfrac{\sqrt{2x^2+1}}{x^2+1}\right)< \dfrac{\pi}{2}$$

    Therefore the range is,

    $$0\leq f(x)< \dfrac{\pi}{2}$$


  • Question 8
    1 / -0
    $$cos^{-1}\left(\dfrac{\pi}{3}+sec^{-1}(-2)\right)$$=
    Solution
    As we know that
    $$\text{sec}^{-1}(-2)=\dfrac{2\pi}{3}$$
    $$\therefore \cos \bigg(\dfrac{\pi}{3}+\text{sec}^{-1}(-2)\bigg)=\cos \bigg(\dfrac{\pi}{3}+\dfrac{2\pi}{3}\bigg)=\cos \pi=-1$$
  • Question 9
    1 / -0
    The value of $$\cot\left(cosec^{-1}\dfrac{5}{3}+\tan^{-1}\dfrac{2}{3}\right)$$ is equal to-
    Solution

  • Question 10
    1 / -0
    $$\int _{ 0 }^{ \pi  }{ \left[ cotx \right] dx,where\left[ \cdot  \right]  } $$ denotes the greatest integer function, is equal to:
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now