Self Studies

Inverse Trigonometric Functions Test - 42

Result Self Studies

Inverse Trigonometric Functions Test - 42
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $${ sec\quad h }^{ -1 }\left( sin\quad \theta  \right) =$$
    Solution

  • Question 2
    1 / -0
    $$\cos^{ -1 }\left[\cos\left( -\frac { 17 }{ 15 } \pi  \right)  \right] $$ is equal to 
    Solution

  • Question 3
    1 / -0
    Find $$\displaystyle \int x.\sin xdx$$
  • Question 4
    1 / -0
    If $$A=\tan^{1-}\left(\dfrac {x\sqrt {3}}{2k-x}\right)$$ and $$B=\tan^{-1}\left(\dfrac {2x-k}{k\sqrt {3}}\right)$$ then $$A.B=$$
    Solution

  • Question 5
    1 / -0
    If $$\cos^{-1}x-\cos^{-1}(\dfrac {y}{2})=\alpha$$ $$ax^{2}-4xy\cos \alpha +y^{2}=$$
    Solution

  • Question 6
    1 / -0
    if x$$>0\quad then\quad { tanh }^{ -1 }\left( \frac { { x }^{ 2 }-1 }{ { x }^{ 2 }+1 }  \right)$$
    Solution

  • Question 7
    1 / -0
    $$\cos ^{ -1 }{ \left\{ \dfrac { 1 }{ 2 } { x }^{ 2 }+\sqrt { 1-{ x }^{ 2 } } \sqrt { 1-\dfrac { { x }^{ 2 } }{ 4 }  }  \right\} =\cos ^{ -1 }{ \dfrac { x }{ 2 } -\cos ^{ -1 }{ x }  }  }$$ holds for:
    Solution
    $$clearly, x/2\epsilon[-1,1]$$&$$x\epsilon[-1,1]$$
          $$   x\epsilon [-2,2]$$&$$ x\epsilon[-1,1]$$
    Intersection of above sells is [-1,1]
    Thus $$,[\left | x \right |\leq 1]$$

  • Question 8
    1 / -0
    $$if\quad x>0\quad then\quad { tanh }^{ -1 }\left( \frac { { x }^{ 2 }-1 }{ { x }^{ 2 }+1 }  \right) $$
    Solution

  • Question 9
    1 / -0
    If $$\cot^{-1}{x}+\tan^{-1}\left (\dfrac{1}{3}\right)=\dfrac{\pi}{2}$$, then $$x$$ will be
    Solution
    Given $$\text{cot}^{-1} x+\text{tan}^{-1}\bigg(\dfrac{1}{3}\bigg)=\dfrac{\pi}{2}$$
    $$\implies \text{cot}^{-1} x=\dfrac{\pi}{2}-\text{tan}^{-1} \bigg(\dfrac{1}{3}\bigg)$$
    $$\implies \text{cot}^{-1} x=\text{cot}^{-1}\bigg(\dfrac{1}{3}\bigg)$$
    $$\implies x=\dfrac{1}{3}$$
  • Question 10
    1 / -0
    If $$x={ \sin }^{ -1 }(\sin10) $$ and $$y={ \cos }^{ -1 }(\cos10)$$, then find $$y - x$$.
    Solution
    Given, $$x=sin^{-1}(sin 10)$$
    $$x=3\pi -10$$

    Also,
    $$y=cos^{-1}(cos 10)$$
    $$y=4\pi - 10$$

    Therefore,
    $$y-x=4\pi-10-3\pi+10 = \pi$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now