Self Studies
Selfstudy
Selfstudy

Matrices Test - 22

Result Self Studies

Matrices Test - 22
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$A = \begin{bmatrix} 2& 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2\end{bmatrix}$$, then $$A^6 =$$
    Solution
    $$A = \begin{bmatrix}2&0&0\\0&2&0\\0&0&2 \end{bmatrix} = 2 \begin{bmatrix}1&0&0\\0&1&0\\0&0&1 \end{bmatrix} = 2I$$

    $$\therefore A^6 = (2I)^6 = 2^6\times I^6 = 2^6I$$

    $$A^6 = 2^6I = 2^5(2I) = 2^5A = 32A$$
  • Question 2
    1 / -0
    Least number of changes for the expression $$ax^{2} + bxy + cy^{2} + dx + ey + f$$ to be symmetric in x and y is
    Solution
    $$ax^2+bxy+cy^2+dx+ey+f$$.......(1)
    Replace by $$x$$ by $$y$$ and $$y$$ by $$x$$
    $$\Rightarrow ay^2+byx+cx^2+dy+ex+f$$.......(2)
    if (1) and (2) are equal then
    $$\boxed{a=c\,and\,d=e}$$
  • Question 3
    1 / -0
    If $$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$, $$B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$, then $$BA =$$
    Solution
    $$A=\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, B=\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

    $$BA=\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$ 

           $$=\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
  • Question 4
    1 / -0
    If $$A$$ and $$B$$ are square matrices such that $$AB = I$$ and $$BA = I$$, then $$B$$ is
    Solution
    $$AB=I$$  $$\&$$  $$BA=I$$ then $$B$$ is the multiplicative inverse of $$A.$$
    Hence, the answer is multiplicative inverse matrix of $$A$$.
  • Question 5
    1 / -0
    Consider the following statements in respect of the matrix $$A = \begin{bmatrix} 0 & 1 & 2\\ -1 & 0  & -3 \\ -2 & 3 & 0 \end{bmatrix}$$ :
    1. The matrix A is skew-symmetric.
    2. The matrix A is symmetric.
    3. The matrix A is invertible.
    Which of the above statements is/are correct ? 
    Solution
    For a matrix to be skew-symmetric
    $$ { A }^{ T }=-A$$
    While for a matrix to be symmetric
    $$ { A }^{ T }= A$$
     and for a matrix to be invertible 
    $$ \left| A \right| \neq 0$$
     $$\Rightarrow $$so for $$  \begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0 \end{bmatrix}$$
    $$ { A }^{ T }=-\begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0 \end{bmatrix}$$ 
    and $$\left| A \right| =0$$
    Hence it is skew symmetric but not invertible
  • Question 6
    1 / -0
    If the sum of the matrices $$\begin{bmatrix} x \\ x \\ y \end{bmatrix},\begin{bmatrix} y \\ y \\ z \end{bmatrix}$$ and $$\begin{bmatrix} z \\ 0 \\ 0 \end{bmatrix}$$ is the matrix $$\begin{bmatrix} 10 \\ 5 \\ 5 \end{bmatrix}$$, then what is the value of  $$y$$?
    Solution
    Since, we have
    $$\left[ \begin{matrix} x \\ x \\ y \end{matrix} \right] +\left[ \begin{matrix} y \\ y \\ z \end{matrix} \right] +\left[ \begin{matrix} z \\ 0 \\ 0 \end{matrix} \right] =\left[ \begin{matrix} 10 \\ 5 \\ 5 \end{matrix} \right]$$ 
    $$\therefore x+y+z=10,$$ $$x+y=5$$ and $$ y+z=5$$
    Replacing $$x+y=5$$ in $$x+y+z=10$$
    We have, $$z=5$$
    Also, $$y+z=5$$
    $$\therefore  y=5-z=0$$
    Option B is correct.
  • Question 7
    1 / -0
    If $$[2\ 3\ 4] \begin{bmatrix}1 & x &3 \\ 2 & 4 & 5\\ 3 & 2 &x \end{bmatrix} \begin{bmatrix} x\\ 2 \\  0 \end{bmatrix} = 0$$, then $$x =$$ ________.
    Solution
    Given, $$[2\ 3\ 4] \begin{bmatrix}1 & x &3 \\ 2 & 4 & 5\\ 3 & 2 &x \end{bmatrix} \begin{bmatrix} x\\ 2 \\  0 \end{bmatrix} = 0$$
    $$\begin {bmatrix} 20 &20+2x&21+4x \end {bmatrix} \begin{bmatrix} x\\ 2 \\  0 \end{bmatrix} = 0$$
    $$\Rightarrow 20x+40+4x=0$$
    $$\Rightarrow 24x + 40 = 0$$
    $$\Rightarrow  x = -\dfrac {5}{3}$$
  • Question 8
    1 / -0
    If $$A$$ is any matrix, then the product $$AA$$ is defined only when A is a matrix of order $$m \times n$$ where : 
    Solution
    Let two matrix be $$A$$ and $$B$$ of order $$m\times n$$ and $$l\times k$$ respectively.
    They can be multiplied if $$n=l$$
    So, if a matrix $$A$$ of order $$m\times n $$ is to be multiplied by $$A$$
    Then, $$m=n$$
  • Question 9
    1 / -0
    Consider the following statements:
    1. The product of two non-zero matrices can never be identity matrix.
    2. The product of two non-zero matrices can never be zero matrix.
    Which of the above statements is/are correct?
    Solution
    Product of a matrix and it's inverse is always an identity matrix.
    Example :- 
    $$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
    And both are non-zero.
    Thus, statement $$1$$ is incorrect.
    Product of two non-zero matrices can be a zero matrix. Example,
    $$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
    Thus, statement $$2$$ is incorrect.
    Hence, option D is correct.
  • Question 10
    1 / -0
    What is $$\begin{bmatrix} x & y & z \end{bmatrix} \begin{bmatrix} a& h & g\\ h & b & f\\ g & f & c\end{bmatrix}$$ equal to?
    Solution
    Order of matrix $$\begin{bmatrix} x& y & z \end{bmatrix}$$ is $$(1\times 2)$$
    Order of matrix $$\begin{bmatrix} a & h & g\\ h & b & f\\ g & f & c\end{bmatrix} $$ is $$(3\times 3)$$

    So, the product $$\begin{bmatrix} x& y& z \end{bmatrix}$$$$\begin{bmatrix} a & h & g\\ h & b & f\\ g & f & c\end{bmatrix} =\begin{bmatrix} ax+hy+gz & hx+by+fz & gx+fy+cz\end{bmatrix}$$ 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now