Self Studies
Selfstudy
Selfstudy

Matrices Test - 27

Result Self Studies

Matrices Test - 27
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    lf $$\mathrm{A}=\left\{\begin{array}{lll}
    1 & 1 & 3\\
    5 & 2 & 6\\
    -2 & -1 & -3
    \end{array}\right\},$$ then $$\mathrm{A}^{3}$$ is a/an
    Solution
    $$A^2$$$$=$$$$\left\{\begin{array}{lll} 1 & 1 & 3\\ 5 & 2 & 6\\ -2 & -1 & -3 \end{array}\right\}\times\left\{\begin{array}{lll} 1 & 1 & 3\\ 5 & 2 & 6\\ -2 & -1 & -3 \end{array}\right\}$$$$=$$$$\left\{\begin{array}{lll} 0 & 0 & 0\\ 3 & 3 & 9\\ -1 & -1 & -3 \end{array}\right\}$$
    $$A^3$$$$=$$$${A^2}\times{A}$$
    $$A^3$$$$=$$$$\left\{\begin{array}{lll} 0 & 0 & 0\\ 3 & 3 & 9\\ -1 & -1 & -3 \end{array}\right\}\times\left\{\begin{array}{lll} 1 & 1 & 3\\ 5 & 2 & 6\\ -2 & -1 & -3 \end{array}\right\}$$$$=$$$$\left\{\begin{array}{lll} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{array}\right\}$$
  • Question 2
    1 / -0
    $$A=\begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix}$$ then $$A^{3}-35A=$$

    Solution
    $$A=\begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix}$$

    $${ A }^{ 2 }=\begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix}\begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix}=\begin{bmatrix} 12 & 12 & 12 \\ 12 & 12 & 12 \\ 12 & 12 & 12 \end{bmatrix}$$

    $${ A }^{ 3 }=\begin{bmatrix} 12 & 12 & 12 \\ 12 & 12 & 12 \\ 12 & 12 & 12 \end{bmatrix}\begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix}=\begin{bmatrix} 72 & 72 & 72 \\ 72 & 72 & 72 \\ 72 & 72 & 72 \end{bmatrix}$$

    $${ A }^{ 3 }-35A=\begin{bmatrix} 72 & 72 & 72 \\ 72 & 72 & 72 \\ 72 & 72 & 72 \end{bmatrix}-35\begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix}$$

    $$=\begin{bmatrix} 72 & 72 & 72 \\ 72 & 72 & 72 \\ 72 & 72 & 72 \end{bmatrix}-\begin{bmatrix} 70 & 70 & 70 \\ 70 & 70 & 70 \\ 70 & 70 & 70 \end{bmatrix}$$

    $$=\begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix}$$


  • Question 3
    1 / -0
    Let $$\left[\begin{array}{ll}
    2 & -2\\-2 & \ 5
    \end{array}\right]=\left[\begin{array}{ll}
    1 & 0\\
    -1 & 1
    \end{array}\right]\left[\begin{array}{ll}
    2 & 0\\
    0 & x
    \end{array}\right]\left[\begin{array}{ll}
    1 & -1\\
    0 & 1
    \end{array}\right]$$, then the value of $$x$$ is
    Solution
    Consider, $$\begin{bmatrix}
    1 & 0\\
    -1 & 1
    \end{bmatrix}\begin{bmatrix}
    2 & 0\\
    0 & x
    \end{bmatrix}\begin{bmatrix}
    1 & -1\\
    0 & 1
    \end{bmatrix}$$

    $$=\begin{bmatrix}
    2 & 0\\
    -2 & x
    \end{bmatrix}\begin{bmatrix}
    1 & -1\\
    0 & 1
    \end{bmatrix}$$

    By given, we have
    $$\begin{bmatrix}
    2 & -2\\
    -2 & 2+x
    \end{bmatrix}=\begin{bmatrix}
    2 & -2\\
    -2 & 5
    \end{bmatrix}$$
    By equality of above matrices, we have
    $$2+x=5$$
    $$\therefore x =3$$
  • Question 4
    1 / -0
    If $$A=\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$, then additive inverse of A is
    Solution

  • Question 5
    1 / -0
    If A and B are two matrices such that $$AB = B$$ and $$BA = A$$, then $$A^2 + B^2$$ is equal to
    Solution
    $$A^{2}+B^{2}=AA+BB$$
               $$=A(BA)+B(AB)$$     (Given $$AB=B \, and \, BA =A$$)
               $$=(AB)A+(BA)B$$
               $$=BA+AB$$
               $$=A+B$$
  • Question 6
    1 / -0
    If $$A \times \begin{bmatrix} 1 & 1\\ 0 & 2 \end{bmatrix} = [1 \ \ 2],$$ then A =
    Solution

  • Question 7
    1 / -0
    $$\begin{bmatrix}a\ \
    b\end{bmatrix}$$ x $$\begin{bmatrix}x\\y \end{bmatrix} =$$           
    Solution

  • Question 8
    1 / -0
    If $$A = \begin{bmatrix} 1 & -1\\ 2 & -1 \end{bmatrix}; B = \begin{bmatrix} 1 & 1\\ 4 & -1 \end{bmatrix},$$ then $$A^2 + B^2 =$$
    Solution

  • Question 9
    1 / -0
    Multiplication of two matrices $$A$$ and $$ B$$ i.e. $$AB,$$ is possible if and only if
    Solution
    Multiplication of two matrices $$A$$ and $$ B$$ is possible if and only if the number of columns in the first matrix is same as the number of rows in the second matrix.
  • Question 10
    1 / -0
    If $$P=\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$ and if
    $$PQ=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$,then $$Q=$$
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now