Self Studies

Determinants Test - 58

Result Self Studies

Determinants Test - 58
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\alpha, \beta$$ are the roots of $$x^2+x+1=0$$ then $$\begin{vmatrix} y+1 & \beta & \alpha\\ \beta & y+\alpha & 1\\ \alpha & 1 & y+\beta\end{vmatrix}=?$$
    Solution
    $$\Rightarrow \alpha  + \beta - 1$$ & $$\alpha \beta = 1$$
    Now $$R_1\rightarrow R_1+R_2+R_3$$ gives
    $$\begin{vmatrix} y & y & y\\ \beta & y+\alpha & 1\\ \alpha & 1 & y+\beta\end{vmatrix}$$
    $$c_2\rightarrow c_2-c_1, c_3\rightarrow c_3-c_1$$ gives
    $$\begin{vmatrix} y & 0 & 0\\ \beta & y+\alpha +\beta & 1-\beta\\ \alpha & 1-\alpha & y+\beta -\alpha\end{vmatrix}=y\{\{y^2-(\alpha -\beta)^2\}-(\uparrow -\alpha)(1-\beta)\}$$.
    $$\Rightarrow y[y^2-((\alpha +\beta)^2-4\alpha\beta)-3]\Rightarrow y[y^2+3-3]=y^3$$.
  • Question 2
    1 / -0
    $$\begin{vmatrix} \sin ^{ 2 }{ \theta  }  & \cos ^{ 2 }{ \theta  }  \\ -\cos ^{ 2 }{ \theta  }  & \sin ^{ 2 }{ \theta  }  \end{vmatrix}=$$
    Solution
    we know that
    $$(sin^2x+cos^2x)^2=sin^4x+cos^4x+2sin^2xcos^2x$$

    $$\begin{vmatrix} \sin ^{ 2 }{ \theta  }  & \cos ^{ 2 }{ \theta  }  \\ -\cos ^{ 2 }{ \theta  }  & \sin ^{ 2 }{ \theta  }  \end{vmatrix}=$$

    $$\sin ^{ 4 }{ \theta  } +\cos ^{ 4 }{ \theta  } =1-2\sin ^{ 2 }{ \theta  } \cos ^{ 2 }{ \theta  }$$

    $$ =1-\cfrac { 1 }{ 2 } \sin ^{ 2 }{ 2\theta  } $$

    $$=1-\cfrac { 1 }{ 2 } \left( 1-\cos ^{ 2 }{ 2\theta  }  \right)$$

    $$ =\cfrac { 1 }{ 2 } \left( 1+\cos ^{ 2 }{ 2\theta  }  \right) $$
  • Question 3
    1 / -0
    The sum of the real roots of the equation
    $$\begin{vmatrix} x & -6 & -1 \\ 2 & -3x & x-3 \\ -3 & 2x & x+2 \end{vmatrix}=0$$ is equal to
    Solution
    Given $$\begin{vmatrix} x & -6 & -1 \\ 2 & -3x & x-3 \\ -3 & 2x & x+2 \end{vmatrix}=0$$ 

    By expansion, we get

    $$x(-3x^2+6x)-(-6)(2x+4-3x+3)+(-1)(4x+9x)$$

    $$\Rightarrow -5{ x }^{ 3 }+30x-30+5x=0\Rightarrow -5{ x }^{ 3 }+35x-30=0\Rightarrow { x }^{ 3 }-7x+6=0$$, All roots are real

    So, sum of roots $$=0$$
  • Question 4
    1 / -0
    $$\begin{vmatrix} a+ib & c+id \\ -c+id & a-ib \end{vmatrix}=$$?
    Solution

  • Question 5
    1 / -0
    For square matrices $$A$$ and $$B$$ of the same order, we have $$adj (AB) = ?$$
    Solution

  • Question 6
    1 / -0
    $$\begin{vmatrix} \cos { { 70 }^{ o } }  & \sin { { 20 }^{ o } }  \\ \sin { { 70 }^{ o } }  & \cos { { 20 }^{ o } }  \end{vmatrix}=$$?
    Solution
    Let us consider $$\Delta=\begin{vmatrix} \cos { { 70 }^{ o } }  & \sin { { 20 }^{ o } }  \\ \sin { { 70 }^{ o } }  & \cos { { 20 }^{ o } }  \end{vmatrix}$$

    $$\Delta =\cos 70^0\cos 20^0-\sin 70^0\sin 20^0$$

    $$=\cos(70^0+20^0)$$

    $$=\cos 90^0$$

    $$\Delta =0$$

    Option $$B$$.
  • Question 7
    1 / -0
    Evaluate : $$\begin{vmatrix} \sin { { 23 }^{ o } }  & -\sin { { 7 }^{ o } }  \\ \cos { { 23 }^{ o } }  & \cos { { 7 }^{ o } }  \end{vmatrix}$$
    Solution

  • Question 8
    1 / -0
    If $$A = \begin{bmatrix} a& b\\c  & d\end{bmatrix}$$ then $$adj\ A = ?$$
    Solution

  • Question 9
    1 / -0
    If $$A$$ is a $$3-rowed$$ square matrix and $$|A| = 5$$ then $$|adj\ A| = ?$$
    Solution
    $$|adj\ A| = |A|^{(n - 1)} = |A|^{2} = 5^{2} = 25$$.
  • Question 10
    1 / -0
    If $$|A| = 3$$ and $$A^{-1} = \begin{bmatrix}3 & -1\\ \dfrac {-5}{3} & \dfrac {2}{3}\end{bmatrix}$$ then $$adj\ A = ?$$
    Solution
    $$A^{-1} = \dfrac {1}{|A|}\cdot adj\ A \rightarrow adj\ A = |A| \cdot A^{-1} = 3A^{-1} = \begin{bmatrix} 9& -3\\ -5 & 2\end{bmatrix}$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now