Given three points
$$(K,2-2K)$$
$$(1-K,2K)$$
$$(-K-4,6-2K)$$
Noe three points $$\left( { x }_{ 1 },{ y }_{ 1 } \right) \left( { x }_{ 2 },{ y }_{ 2 } \right) \left( { x }_{ 3 },{ y }_{ 3 } \right) $$ will be collinear
if
$$\Rightarrow \left[ { x }_{ 1 }\left( { y }_{ 2 }-{ y }_{ 3 } \right) +{ x }_{ 2 }\left( { y }_{ 3 }-{ y }_{ 1 } \right) +{ x }_{ 3 }\left( { y }_{ 1 }-{ y }_{ 2 } \right) \right] =0\quad \longrightarrow \left( 1 \right) $$
Putting $${ x }_{ 1 }=K;{ y }_{ 1 }=2-2K$$
$${ x }_{ 2 }=1-K;{ y }_{ 2 }=2K$$
$${ x }_{ 3 }=-K-4;{ y }_{ 3 }=6-2K$$
in the equation $$(1)$$ we get
$$\Rightarrow K\left( 2K-6+2K \right) +\left( 1-K \right) \left( 6-2K-2+2K \right) +\left( K-4 \right) \left( 2-2K-2K \right) =0$$
$$\Rightarrow K\left( 4K-6 \right) +\left( 1-K \right) \left( 4 \right) +\left( -K-4 \right) \left( 2-4K \right) =0$$
$$\Rightarrow { 4K }^{ 2 }-6K+4-4K-\left( 2K-{ 4K }^{ 2 }+8-16K \right) =0$$
$$\Rightarrow { 4K }^{ 2 }-6K+4-4K-2K+{ 4K }^{ 2 }-8+16K=0$$
$$\Rightarrow { 8K }^{ 2 }+4K-4=0$$
$$\Rightarrow { 2K }^{ 2 }+K-1=0$$
$$\Rightarrow { 2K }^{ 2 }+2K-K-1=0$$
$$\Rightarrow 2K\left( K+1 \right) -1\left( K+1 \right) =0$$
$$\Rightarrow \left( 2K-1 \right) \left( K+1 \right) =0$$
$$\therefore$$ $$K=1/2,-1$$
[option B, option D]