Self Studies

Determinants Test - 67

Result Self Studies

Determinants Test - 67
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$A=\begin{bmatrix} 2 & 1 & -1 \\ 0 & 1 & 4 \\ 0 & 0 & 3 \end{bmatrix}$$, then $$tr(adj(adj\ A))$$ is equal  to
    Solution

  • Question 2
    1 / -0
    Let $$A =[a_{ij}]$$ be a $$3 \times 3 $$ matrix whose determinant is $$5$$. Then the determinant of the matrix $$B = [ 2^{i-j} a_{ij} ]$$ is
    Solution

  • Question 3
    1 / -0
    $$A=\begin{bmatrix} 1 & 1 \\ 3 & 4 \end{bmatrix}$$ and A (adj A)=KI, then the value of 'K' is ...
    Solution

  • Question 4
    1 / -0
    If $$\left[ \begin{matrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{matrix} \right]$$ then $$|adj\ (adj\ A)|$$ is equal to
    Solution

  • Question 5
    1 / -0
    If $$A=\begin{bmatrix} 1 & -2 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix}$$, then $$A.adj(a)=$$
    Solution

  • Question 6
    1 / -0
    If $$A$$ is a square matrix of order $$n$$ and $$|A|=D$$ and $$|adj A|=D^{\prime}$$, then
    Solution

  • Question 7
    1 / -0
    If the points (k, 2 - 2k) (1 - k, 2k) and (-k -4, 6 -2x) be collinear the possible values of k are
    Solution

    Given three points
    $$(K,2-2K)$$
    $$(1-K,2K)$$
    $$(-K-4,6-2K)$$
    Noe three points $$\left( { x }_{ 1 },{ y }_{ 1 } \right) \left( { x }_{ 2 },{ y }_{ 2 } \right) \left( { x }_{ 3 },{ y }_{ 3 } \right) $$ will be collinear
    if
    $$\Rightarrow \left[ { x }_{ 1 }\left( { y }_{ 2 }-{ y }_{ 3 } \right) +{ x }_{ 2 }\left( { y }_{ 3 }-{ y }_{ 1 } \right) +{ x }_{ 3 }\left( { y }_{ 1 }-{ y }_{ 2 } \right)  \right] =0\quad \longrightarrow \left( 1 \right) $$
    Putting $${ x }_{ 1 }=K;{ y }_{ 1 }=2-2K$$
    $${ x }_{ 2 }=1-K;{ y }_{ 2 }=2K$$
    $${ x }_{ 3 }=-K-4;{ y }_{ 3 }=6-2K$$
    in the equation $$(1)$$ we get
    $$\Rightarrow K\left( 2K-6+2K \right) +\left( 1-K \right) \left( 6-2K-2+2K \right) +\left( K-4 \right) \left( 2-2K-2K \right) =0$$
    $$\Rightarrow K\left( 4K-6 \right) +\left( 1-K \right) \left( 4 \right) +\left( -K-4 \right) \left( 2-4K \right) =0$$
    $$\Rightarrow { 4K }^{ 2 }-6K+4-4K-\left( 2K-{ 4K }^{ 2 }+8-16K \right) =0$$
    $$\Rightarrow { 4K }^{ 2 }-6K+4-4K-2K+{ 4K }^{ 2 }-8+16K=0$$
    $$\Rightarrow { 8K }^{ 2 }+4K-4=0$$
    $$\Rightarrow { 2K }^{ 2 }+K-1=0$$
    $$\Rightarrow { 2K }^{ 2 }+2K-K-1=0$$
    $$\Rightarrow 2K\left( K+1 \right) -1\left( K+1 \right) =0$$
    $$\Rightarrow \left( 2K-1 \right) \left( K+1 \right) =0$$
    $$\therefore$$   $$K=1/2,-1$$
    [option B, option D]

  • Question 8
    1 / -0
    If $$A = \begin{bmatrix} 4 & 2 \\ 3 & 4 \end{bmatrix}$$ then |adj A| is equal to 
    Solution

  • Question 9
    1 / -0
    If $$A = \begin{bmatrix}1 & 2 & -1\\ -1 & 2 & 2\\ 2 & -1 & 1\end{bmatrix}$$, then $$:|adj (adj.A)|=$$
    Solution

  • Question 10
    1 / -0
    If $$A=\begin{bmatrix} a & c & b\\ b & a & c\\ c & b & a\end{bmatrix}$$ then the cofactor of $$a_{32}$$ in $$A+A^T$$ is?
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now