Self Studies

Application of Derivatives Test - 65

Result Self Studies

Application of Derivatives Test - 65
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Which of the following statements is/are correct ?
    Solution

  • Question 2
    1 / -0
    $$f(x)$$ is differentiable function satisfying the relation $$f(x)=x^{2}+\displaystyle \int^{x}_{0}e^{-t}f(x-t)dt$$, then $$\displaystyle \sum^{9}_{k=1}f(k)$$ equals
    Solution

  • Question 3
    1 / -0
    $$f(x)=\frac{x}{log x}-\frac{log}{x}$$ is increasing in 
    Solution

  • Question 4
    1 / -0
    If $$y = \log _ { \sin x } ( \tan x ) ,$$ then $$\frac { d y } { d x }$$ at $$x = \frac { \pi } { 4 }$$ is:

    Solution

  • Question 5
    1 / -0
    If $$\theta$$ is angle of intersection between $$y=10-x^{2}$$ and $$y=4+x^{2}$$ then $$|\tan \theta|$$ is-
    Solution
    Given:$$y=10-{x}^{2}$$    ......$$(1)$$
    $$y=4+{x}^{2}$$    ......$$(2)$$
    On solving,
    $$10-{x}^{2}=4+{x}^{2}$$
    $$\Rightarrow 2{x}^{2}=6$$
    $$\Rightarrow {x}^{2}=\dfrac{6}{2}=3$$
    $$\therefore x=\pm \sqrt{3}$$ from $$(1)$$
    $$\Rightarrow y=10-{\left(\pm\sqrt{3}\right)}^{2}=10-3=7$$
    Consider $$y=10-{x}^{2}$$
    $$\dfrac{dy}{dx}=-2x$$
    $${m}_{1}=\left[\dfrac{dy}{dx}\right]_{\left(\sqrt{3},7\right)}=-2\times\sqrt{3}=-2\sqrt{3}$$
    Consider $$y=4+{x}^{2}$$    
    $$\dfrac{dy}{dx}=2x$$
    $${m}_{2}=\left[\dfrac{dy}{dx}\right]_{\left(\sqrt{3},7\right)}=2\times\sqrt{3}=2\sqrt{3}$$
    $$=\left|\dfrac{{m}_{1}-{m}_{2}}{1+{m}_{1}{m}_{2}}\right|$$
    $$\tan{\theta}=\left|\dfrac{-2\sqrt{3}-2\sqrt{3}}{1+\left(-2\sqrt{3}\right)\left(2\sqrt{3}\right)}\right|$$
    $$=\left|\dfrac{-4\sqrt{3}}{1-12}\right|$$
    $$=\dfrac{4\sqrt{3}}{11}$$
    $$\therefore \tan{\theta}=\dfrac{4\sqrt{3}}{11}$$
  • Question 6
    1 / -0
    The function $$f(x)=\sqrt{25-4x^{2}}$$ is increasing in
  • Question 7
    1 / -0
    The function log (log x) increases in 
  • Question 8
    1 / -0
    The function f defined by $$f(x)=(x+2)e^{-x}$$ si
  • Question 9
    1 / -0
    If $$f:R\rightarrow R$$ is the function defined by $$f\left( x \right) =\frac { { e }^{ { x }^{ 2 } }-{ e }^{ -x^{ 2 } } }{ { e }^{ x^{ 2 } }+{ e }^{ { -x }^{ 2 } } } ,$$ then
  • Question 10
    1 / -0
    Let $$f(x)=\left\{\begin{matrix} max \{|x|, x^2\}, & |x|\leq 2\\ 8-2|x|, & 2 < |x|\leq 4\end{matrix}\right.$$
    Let S be the set of points in the interval $$(-4, 4)$$ at which f is not differentiable. Then S?
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now