To find the Integral of
$$ \int_{0}^{\Pi }\dfrac{xdx}{4cos^{2}x + 9sin^{2}x} $$
Let ,
$$I = \int_{0}^{\Pi }\dfrac{xdx}{4cos^{2}x + 9sin^{2}x} $$ --------> Equation 1
As we know that ,
$$ \int_{a}^{b } f(x)dx = \int_{a}^{b } f(a+b -x)dx $$
$$ I = \int_{0}^{\Pi }\dfrac{(\Pi -x)dx}{4cos^{2}(\Pi -x) + 9sin^{2}(\Pi -x)} $$
$$ I = \int_{0}^{\Pi }\dfrac{(\Pi -x)dx}{4cos^{2}x + 9sin^{2}x} $$ ------> Equation 2
On Adding Equation 1 and 2 we get
$$ 2I = \int_{0}^{\Pi }\dfrac{(\Pi -x + x)dx}{4cos^{2}x + 9sin^{2}x} $$
$$ I = \dfrac{\Pi }{2}\int_{0}^{\Pi }\dfrac{dx}{4cos^{2}x + 9sin^{2}x} $$
$$ I = \dfrac{\Pi }{18}\int_{0}^{\Pi }\dfrac{dx}{\dfrac{4}{9}cos^{2}x + sin^{2}x} $$
$$ I = \dfrac{\Pi }{18}\int_{0}^{\Pi }\dfrac{sec^{2}xdx}{tan^{2}x + \dfrac{4}{9}} $$
$$ I = \dfrac{2\Pi }{18}\int_{0}^{\Pi/2 }\dfrac{sec^{2}xdx}{(tanx)^{2} + \left ( \dfrac{2}{3} \right )^{2}} $$
$$ I = \dfrac{\Pi }{9}\int_{0}^{\Pi/2 }\dfrac{sec^{2}xdx}{(tanx)^{2} + \left ( \dfrac{2}{3} \right )^{2}} $$
Let $$ tanx = t $$
So that $$sec^{2}x dx =dt$$
When $$ x = 0 , t = 0 $$
When $$ x = \dfrac{\Pi }{2} $$ , $$t = ∞$$
Above Integral Becomes ,
$$ I = \dfrac{\Pi }{9}\int_{0}^{\infty }\dfrac{dt}{t^{2} + \left ( \dfrac{2}{3} \right )^{2}} $$
$$ I =\dfrac{\Pi }{6} \left [ tan^{-1}\left \{ \dfrac{t}{\dfrac{2}{3}} \right \}\right ]_{t= 0}^{\infty } $$
$$ I =\dfrac{\Pi }{6} \left [ tan^{-1}\left ( \dfrac{3t}{2} \right )\right ]_{t = 0}^{\infty } $$
$$ I =\dfrac{\Pi }{6}\times \left [ tan^{-1}\infty - tan^{-1}(0)\right ]$$
$$ I =\dfrac{\Pi }{6}\times \left [ \dfrac{\Pi }{2} - 0 \right ]$$
$$ I = \dfrac{\Pi }{6}\times \dfrac{\Pi }{2} $$
$$ I = \dfrac{\Pi^{2} }{12} $$