Self Studies

Integrals Test - 13

Result Self Studies

Integrals Test - 13
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let $$F(x)=f(x)+f\left ( \dfrac{1}{x} \right )$$, where $$f(x)=\int_{l}^{x}\dfrac{logt}{l+t}dt$$. Then $$F(e)$$ equals
    Solution
    $$\displaystyle \because f\left( x \right) =\int _{ 1 }^{ x }{ \frac { x\log { t }  }{ 1+t } dt } $$ and $$\displaystyle F\left( e \right) =f\left( e \right) +f\left( \frac { 1 }{ e }  \right) $$
    $$\displaystyle \Rightarrow F\left( e \right) =\int _{ 1 }^{ e }{ \frac { \log { t }  }{ 1+t } dt } +\int _{ 1 }^{ 1/e }{ \frac { x\log { t }  }{ 1+t } dt } $$
    $$\displaystyle =\int _{ 1 }^{ e }{ \frac { \log { t }  }{ 1+t } dt } +\int _{ 1 }^{ e }{ \frac { \log { t }  }{ t\left( 1+t \right)  } dt } =\int _{ 1 }^{ e }{ \frac { \log { t }  }{ t } dt } $$
    $$\displaystyle ={ \left[ \frac { { \left( \log { t }  \right)  }^{ 2 } }{ 2 }  \right]  }_{ 1 }^{ e }=\frac { 1 }{ 2 } \left[ { \left( \log { e }  \right)  }^{ 2 }-{ \left( \log { 1 }  \right)  }^{ 2 } \right] =\frac { 1 }{ 2 } $$
  • Question 2
    1 / -0
    For x > 0, let f(x) = $$\displaystyle \int_{1}^{x}{ \frac{log t}{1 + t}} dt $$. Then f(x) + f$$\displaystyle \left( \frac{1}{x} \right)$$ is equal to:
    Solution
    $$f(x)=\int _{ 1 }^{ x }{ \cfrac { \log { t }  }{ 1+{ t } }  } $$       $$--(1)$$
    $$f\left( \cfrac { 1 }{ x }  \right) =\int _{ 1 }^{ 1/x }{ \cfrac { \log { t }  }{ 1+{ t } }  } $$
    Put t=1/u
    $$f\left( \cfrac { 1 }{ x }  \right) =\displaystyle\int _{ 1 }^{ x }{ \cfrac { -u.\log { u }  }{ (1+{ u) } } \cfrac { -du }{ { u }^{ 2 } }  } $$
    $$f\left( \cfrac { 1 }{ x }  \right) =\displaystyle \int _{ 1 }^{ x }{ \cfrac { \log { u }  }{ u(1+{ u) } } du } $$  $$--(2)$$
    Add (1) and (2)
    $$=\displaystyle \int _{ 1 }^{ x }{ \cfrac { \log { u }  }{ u } du }$$  
    $$z=logu\\ dz=\cfrac { du }{ u } $$
    $$\int _{ 1 }^{ x }{ zdz } $$
    $$={ \cfrac { 1 }{ 2 } (\log { x }  })^{ 2 }$$
  • Question 3
    1 / -0
    The value of $$\displaystyle\int^{2\pi}_{0}\dfrac{x\sin^8x}{\sin^8x+\cos^8x}dx$$ is equal to?
    Solution
    Let $$I = \displaystyle \int_0^{2 \pi} \dfrac{x \sin^8 x}{\sin^8 x + \cos^8 x}$$ ___(1)

    $$I = \displaystyle \int_0^{2 \pi} \dfrac{(2\pi - x) \sin^8 (2\pi - x)}{\sin^8 (2 \pi - x) + \cos^8 (2 \pi - x)}$$

    $$I = \displaystyle \int_0^{2 \pi} \dfrac{(2\pi - x) \sin^8 x}{\sin^8 x + \cos^8 x}$$ ___(2)

    Add (1) + (2) we get,

    $$2I = \displaystyle \int_0^{2 \pi} \dfrac{2 \pi \sin^8 x}{\sin^8 x + \cos^8 x}$$

    $$2I = 2 \times 2 \pi \displaystyle \int_0^{\pi} \dfrac{\sin^8 x}{\sin^8 x + \cos^8 x}$$

    $$I = 2 \pi \displaystyle \int_0^{\pi} \dfrac{\sin^8 x}{\sin^8 x + \cos^8 x} dx$$

    $$I = 4 \pi \displaystyle \int_0^{\pi/2} \dfrac{\sin^8 x}{\sin^8 x + \cos^8 x} dx$$ __(3)

    $$I = 4\pi \displaystyle \int_0^{\pi/2} \dfrac{\sin^8 \left(\dfrac{\pi}{2} - x \right)}{\sin^8 \left(\dfrac{\pi}{2} - x \right) + \cos^8 \left(\dfrac{\pi}{2} - x \right)}$$

    $$I = 4 \pi \displaystyle \int_0^{\pi/2} \dfrac{\cos^8 (x)}{\sin^8 x + \cos^8 x} $$ __(4)

    add (3) + (4) we get

    $$I = 2 \pi \displaystyle \int_0^{\pi/2} \dfrac{\sin^8 x + \cos^8 x}{\sin^8 x + \cos^8 x} dx = 2\pi \displaystyle \int_0^{\pi/2} 1 dx = 2 \pi \times \dfrac{\pi}{2} = \pi^2$$
  • Question 4
    1 / -0
    The integral $$\displaystyle\int^{{\pi}/{4}}_{{\pi}/{12}}\frac{8\cos 2x}{(\tan x+\cot x)^3}dx$$ equals?
    Solution
    $$I=\displaystyle\int^{{\pi}/{4}}_{{\pi}/{12}} {\displaystyle\cfrac{8\cos 2x \sin^3x\cos^3 x}{{(\sin^2x+\cos^2x)}^3}} dx$$

    $$I=\displaystyle\int^{{\pi}/{4}}_{{\pi}/{12}}{\displaystyle\cfrac{2.8\cos 2x \sin^3 2x}{2}}\frac{dx}{8}$$

    Put $$\sin 2x =t \Rightarrow 2 \cos2x dx=dt$$

    When $$x=\displaystyle\frac{\pi}{12}, t=\frac{1}{2}$$

    $$x=\displaystyle\frac{\pi}{4}, t=1$$

    $$I=\displaystyle\int^1_{\frac{1}{2}}\dfrac{t^3}2\ {dt}$$

    $$=\displaystyle\frac{1}{2}\left(\displaystyle\frac{t^4}{4}\right)^1_{\frac{1}{2}}$$

    $$=\displaystyle\frac{1}{8}\left(1-\displaystyle\frac{1}{16}\right)$$

    $$=\displaystyle\frac{15}{128}$$.
  • Question 5
    1 / -0
    The value of $$\displaystyle \int_{0}^{1}\frac{8\log(1+\mathrm{x})}{1+\mathrm{x}^{2}}$$ dx is 

    Solution
    $$\displaystyle \mathrm{I}=\int_{0}^{1}\frac{8\log(1+\mathrm{x})}{1+\mathrm{x}^{2}} dx$$

    Let $$\mathrm{x}=\tan\theta=$$ dx $$=\sec^{2}\theta \mathrm{d}\theta$$

    $$\displaystyle \mathrm{I}=\int_{0}^{\pi/4}8\log(1+\tan\theta)\mathrm{d} \theta$$

    $$\displaystyle \mathrm{I}=8\int_{0}^{\pi/4}\log(1+\tan(\frac{\pi}{4}-\theta))\mathrm{d} \theta$$

    $$=8\displaystyle \int_{0}^{\pi/4}\log(\frac{2}{1+\tan\theta})\mathrm{d}\theta$$

    $$=8\displaystyle \int_{0}^{\pi/4}(\log 2-\log(1+\tan\theta))\mathrm{d} \theta$$

    $$\displaystyle \mathrm{I}=4\int_{0}^{\pi/4}\log 2\mathrm{d}\theta=\pi log2 $$
    Hence, option 'A' is correct.
  • Question 6
    1 / -0
    If $$\displaystyle\int \dfrac{\cos x \, dx}{\sin^3x(1+\sin^6x)^{2/3}} = f(x)(1 + \sin^6x)^{1/\alpha} + c$$
    Where $$c$$ is a constant of integration, then $$\lambda f\left(\dfrac{\pi}{3}\right)$$ is equal to:
    Solution
    $$\displaystyle\int \dfrac{\cos x \, dx}{\sin^3x(1+\sin^6x)^{2/3}} = f(x)(1 + \sin^6x)^{1/\alpha} + c.....given$$

    Let $$\sin x = t$$

    $$\cot x dx= dt$$

    $$\displaystyle I= \int \dfrac{dt}{t^3(1+t^6)^{2/3}}$$

    $$\displaystyle I=\int \dfrac{dt}{t^3.t^4\left(1 + \dfrac{1}{t^6}\right)^{2/3}}$$

    $$\displaystyle I=\int \dfrac{dt}{t^7\left(1 + \dfrac{1}{t^6}\right)^{2/3}}$$

    Put $$ 1+\dfrac{1}{t^6}=r^3$$

    $$\Rightarrow \dfrac{dt}{t^7} = \dfrac{-1}{2}r^2dr$$

    $$= \dfrac{-1}{2}\displaystyle\int \dfrac{r^2dr}{r^2}$$

    $$=\dfrac{-1}{2}r +c$$

    $$= \dfrac{-1}{2}\left(\dfrac{\sin^6x + 1}{\sin^6x}\right)^{1/3}+c  .......$$As $$r=\left (1+\dfrac{1}{t^6}\right )^{1/3}$$ and $$t=\sin x$$

    $$=\dfrac{-1}{2\sin^2x} (1 + \sin^6x)^{1/3}+c$$

    $$f(x) = -\dfrac{1}{2} cosec^{2}x$$ and $$\lambda = 3$$

    Now for $$x=\dfrac{\pi}3$$

    $$cosec \dfrac{\pi}3=\dfrac{2}{\sqrt3}$$

    $$\lambda f \left(\dfrac{\pi}{3}\right) = \dfrac{-1}2\times \left (\dfrac{2}{\sqrt3}\right )^2\times 3$$

    $$\boxed{\lambda f \left(\dfrac{\pi}{3}\right) = -2}.....Answer$$

    Hence option $$'B'$$ is the answer.
  • Question 7
    1 / -0
    The following integral $$\displaystyle \int_{\pi/4}^{\pi/2} (2 cosec  x)^{17}dx$$ is equal to
    Solution
    $$\displaystyle \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} (2 cosec  x)^{17}dx$$

    Let
    $$e^u+e^{-u}= 2 cosec  x$$
    $$ x = \displaystyle \frac{\pi}{4}  \Rightarrow u = ln (1+\sqrt{2})$$

    $$x = \dfrac{\pi}{2}  \Rightarrow u = 0$$
    $$\Rightarrow cosec  x + cot  x = e^u$$  and  $$cosec  x - cot  x = e^{-u} $$
    $$\Rightarrow  x = \displaystyle \frac{e^u - e^{-u}}{2} (e^u - e^{-u}) dx = -2  cosec x cot  x dx$$

    $$\Rightarrow - \displaystyle \int(e^u + e^{-u})^{17} \frac{(e^u - e^{-u})}{2  cosec  x  cot  x}du$$

    $$=-2  \int_{ln(1+\sqrt{2})}^{0}  (e^u + e^{-u})^{16}du$$

    $$= \int_{0}^{ln (1+\sqrt{2})} 2(e^u + e^{-u})^{16}du$$
  • Question 8
    1 / -0

    Directions For Questions

    Given that for each $$\displaystyle a  \in (0, 1), \lim_{h \rightarrow 0^+} \int_h^{1-h} t^{-a} (1 -t)^{a-1}dt$$ exists. Let this limit be $$g(a)$$ 
    In addition, it is given that the function $$g(a)$$ is differentiable on $$(0, 1)$$
    Then answer the following question.

    ...view full instructions

    The value of $$g\displaystyle \left ( \frac{1}{2} \right )$$ is?
    Solution
    $$g \displaystyle \left ( \frac{1}{2} \right ) = \lim_{h \rightarrow 0^+} \int_h^{1 - h} t^{-1/2} (1-t)^{-1/2} dt$$
    $$=

    \int_0^1 \displaystyle \frac{dt}{\sqrt{t - t^2}} = \int_0^1

    \frac{dt}{\sqrt{\frac{1}{4} - \left ( t-\frac{1}{2} \right )^2}} =

    sin^{-1} \left ( \frac{t - \frac{1}{2}}{\frac{1}{2}} \right ) |_0^1$$
    $$= sin^{-1} 1 -sin^{-1} (-1) = \pi$$
  • Question 9
    1 / -0
    The value of the integral $$\displaystyle \int_0^1 \dfrac{x^{\alpha}-1}{\log x}dx$$ is
    Solution
    $$I(\alpha)=\displaystyle\int_0^1\dfrac{x^{\alpha}-1}{\text{log }x}dx$$

    Differentiating with respect to $$\alpha,$$ we get$$,$$
    $$I'(\alpha)=\displaystyle\int_0^1x^\alpha dx=\dfrac{1}{\alpha +1}$$
    We need to solve this simple differential equation $$:I'(\alpha)=\dfrac{1}{\alpha +1}$$
    On solving, we get,
    $$I(\alpha)=\text{log}(\alpha +1)+C$$

    Now, from the initial equation, we can find that  $$I(0)=0$$
    $$I(0)=\text{log}(1)+C=0$$  $$\Rightarrow C=0$$

    So,  $$I(\alpha)=\text{log}(\alpha +1)$$
  • Question 10
    1 / -0
    $$\int _{ 0 }^{ \pi  }{ \cfrac { xdx }{ 4\cos ^{ 2 }{ x } +9\sin ^{ 2 }{ x }  }  } =$$
    Solution
    To   find   the  Integral   of 

    $$ \int_{0}^{\Pi }\dfrac{xdx}{4cos^{2}x + 9sin^{2}x} $$

    Let  , 
    $$I  =  \int_{0}^{\Pi }\dfrac{xdx}{4cos^{2}x + 9sin^{2}x} $$   -------->  Equation  1 

    As   we   know   that  ,
    $$ \int_{a}^{b } f(x)dx =   \int_{a}^{b } f(a+b -x)dx $$  

    $$ I  = \int_{0}^{\Pi }\dfrac{(\Pi  -x)dx}{4cos^{2}(\Pi -x) + 9sin^{2}(\Pi -x)} $$ 

    $$ I  = \int_{0}^{\Pi }\dfrac{(\Pi  -x)dx}{4cos^{2}x + 9sin^{2}x} $$  ------> Equation 2

    On   Adding   Equation  1   and   2  we   get 
    $$ 2I  = \int_{0}^{\Pi }\dfrac{(\Pi  -x + x)dx}{4cos^{2}x + 9sin^{2}x} $$ 

    $$ I  = \dfrac{\Pi }{2}\int_{0}^{\Pi }\dfrac{dx}{4cos^{2}x + 9sin^{2}x} $$ 

    $$ I  = \dfrac{\Pi }{18}\int_{0}^{\Pi }\dfrac{dx}{\dfrac{4}{9}cos^{2}x + sin^{2}x} $$ 

    $$ I  = \dfrac{\Pi }{18}\int_{0}^{\Pi }\dfrac{sec^{2}xdx}{tan^{2}x + \dfrac{4}{9}} $$ 

    $$ I  = \dfrac{2\Pi }{18}\int_{0}^{\Pi/2 }\dfrac{sec^{2}xdx}{(tanx)^{2} + \left ( \dfrac{2}{3} \right )^{2}} $$ 

    $$ I  = \dfrac{\Pi }{9}\int_{0}^{\Pi/2 }\dfrac{sec^{2}xdx}{(tanx)^{2} + \left ( \dfrac{2}{3} \right )^{2}} $$ 

    Let    $$  tanx  =  t $$  
    So   that   $$sec^{2}x dx  =dt$$

    When     $$  x  = 0    ,  t  = 0  $$

    When    $$ x = \dfrac{\Pi }{2} $$  ,  $$t = ∞$$

    Above  Integral  Becomes  ,

    $$ I  = \dfrac{\Pi }{9}\int_{0}^{\infty }\dfrac{dt}{t^{2} + \left ( \dfrac{2}{3} \right )^{2}} $$

    $$ I  =\dfrac{\Pi }{6} \left [ tan^{-1}\left \{ \dfrac{t}{\dfrac{2}{3}} \right \}\right ]_{t= 0}^{\infty } $$


    $$ I  =\dfrac{\Pi }{6} \left [ tan^{-1}\left ( \dfrac{3t}{2} \right )\right ]_{t = 0}^{\infty } $$

    $$ I  =\dfrac{\Pi }{6}\times  \left [ tan^{-1}\infty  -  tan^{-1}(0)\right ]$$

    $$ I  =\dfrac{\Pi }{6}\times  \left [ \dfrac{\Pi }{2}  -  0 \right ]$$

    $$ I  =  \dfrac{\Pi }{6}\times \dfrac{\Pi }{2} $$

    $$ I  =  \dfrac{\Pi^{2} }{12} $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now