Self Studies

Integrals Test - 15

Result Self Studies

Integrals Test - 15
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    $$\displaystyle \int_{-1}^{3}\left( \tan^{ -1 }\frac { x }{ x^{ 2 }+1 } +\tan ^{ -1 } \frac { x^{ 2 }+1 }{ x }  \right) dx=$$
    Solution

    We need to find the value of $$\displaystyle \int_{-1}^{3} \left[ \tan^{-1}\left ( \dfrac{x}{x^2+1} \right) + \tan^{-1}\left ( \dfrac{x^2+1}{x}\right ) \right] dx$$


    We know $$\tan^{-1}p+\cot^{-1}p=\dfrac{\pi}{2}$$


    $$\Rightarrow   \tan^{-1}p+\tan^{-1}\dfrac{1}{p}=\dfrac{\pi}{2}$$


    So, $$\tan^{-1}\left ( \dfrac{x}{x^2+1} \right )+\tan^{-1}\left ( \dfrac{x^2+1}{x} \right )=\dfrac{\pi}{2}$$


    $$\displaystyle \int_{-1}^{3}\left [ \tan^{-1} \left ( \dfrac{x}{1+x^2}\right ) + \tan^{-1}\left ( \dfrac{x^2+1}{x}\right ) \right ]dx$$


    $$=\displaystyle \int_{-1}^{3}\dfrac{\pi}{2}dx$$


    $$=\dfrac{\pi}{2}\int_{-1}^{3}1\cdot dx$$


    $$=\dfrac{\pi}{2}[3-(-1)]$$


    $$=\dfrac{\pi}{2}\times 4=2\pi$$

  • Question 2
    1 / -0
    If $$\displaystyle \int_{1/\sqrt{3}}^{k}\dfrac{1}{1+x^{2}}dx=$$ $$\dfrac{\pi}{6}$$ 
    then the upper limit $$k=?$$
    Solution

    $$\displaystyle \int_{\frac{1}{\sqrt{3}}}^{k}\dfrac{1}{1+x^2}dx=\dfrac{\pi}{6}$$

    $$\displaystyle \int_{\frac{1}{\sqrt{3}}}^{k}\dfrac{1}{1+x^2}dx=tan^{-1}x\displaystyle \vert _{\frac{1}{\sqrt{3}}}^{k}$$

    $$=[tan^{-1}k-tan^{\dfrac{-1}{\sqrt{3}}}]$$

    $$=tan^{-1}k-tan^{-1}\dfrac{1}{\sqrt{3}}=\dfrac{\pi}{6}$$

    $$tan^{-1}\dfrac{1}{\sqrt{3}}=\dfrac{\pi}{6}$$ ---- equation (i)

    $$tan^{-1}k=\dfrac{\pi}{6}+\dfrac{\pi}{6}$$ ---- equation (ii)

    $$tan^{-1}k=\dfrac{\pi}{3}$$

    $$k=\sqrt{3}$$

  • Question 3
    1 / -0
    $$\displaystyle \int_{0}^{1}\frac{4x^{3}}{\sqrt{1-x^{8}}}dx =?$$
    Solution
    $$\displaystyle \int_{0}^{1}\dfrac{4x^3}{\sqrt{1-x^8}}dx=\int_{0}^{1}\dfrac{d(x^4)}{\sqrt{1-(x^4)^2}}$$

    $$=\displaystyle\int_{0}^{1}\dfrac{d(x^4)}{\sqrt{1-(x^4)^2}}=[sin^{-1}(x^4)+c]_{0}^{1}\  \left(\int\dfrac{1}{\sqrt{1-x^2}}=sin^{-1}x\right)$$

    $$=\displaystyle[(sin^{-1}(1)+c)-(sin^{-1}(0)+c)]$$

    $$=\displaystyle sin^{-1}1 =\dfrac{\pi}{2}$$
  • Question 4
    1 / -0
    The integral $$\displaystyle \int_{0}^{\pi/4}\frac{\sin^{9}x}{\cos^{11}x}dx=$$
    Solution

    $$\displaystyle I=\int_{0}^{\dfrac{\pi}{4}}\dfrac{\sin ^9  x}{\cos ^{11}x}dx=\int_{0}^{\dfrac{\pi}{4}}\dfrac{\sin ^9  x}{\cos ^{9}x} \sec ^2  dx$$

    $$\displaystyle =\int_{0}^{\dfrac{\pi}{4}} \tan ^9x d(\tan   x)$$

    $$=\left[\dfrac{\tan ^{10}x}{10}+c \right]_{0}^{\dfrac{\pi}{4}}$$

    $$=\left [ \left ( \dfrac{\tan ^{10}(\dfrac{\pi}{4})}{10}+c \right ) -\left ( \dfrac{\tan ^{10}(0)}{10} +c \right )\right ]$$

    $$\tan \dfrac{\pi}{4}=1  ;  \tan   0=0$$

    $$\Rightarrow I=\dfrac{1}{10}-\dfrac{0}{10}=\dfrac{1}{10}$$

    So,  $$\displaystyle \int_{0}^{\dfrac{\pi}{4}}\dfrac{\sin ^9 x}{\cos ^{11}x}dx=\dfrac{1}{10}$$

  • Question 5
    1 / -0

    $$\displaystyle \int_{0}^{\pi_/{2}}\frac{\cos x}{1+\sin x}d_{X=}$$
    Solution

    $$\int_{0}^{\dfrac{\pi}{2}}\dfrac{cos  x}{1+sin  x}dx$$
    we know that
    $$\int_{0}^{\dfrac{\pi}{2}}\dfrac{cos  x}{1+sin  x}dx=\int_{0}^{\dfrac{\pi}{2}}\dfrac{d(sin  x)}{1+sin  x}$$
    $$\int_{0}^{\dfrac{\pi}{2}}\dfrac{d (sin  x)}{1+sin  x}=log (1+sin  x)\int_{0}^{\dfrac{\pi}{2}}$$
    $$=log (1+sin \dfrac{\pi}{2}) - log (1+sin  0)$$
    $$=log (2)$$
    $$=log 2$$

  • Question 6
    1 / -0
    Evaluate: $$\displaystyle \int_{0}^{1}\frac{\tan^{-1}x}{1+x^{2}}dx$$
    Solution
    $$ \displaystyle\int_{0}^{1} \dfrac{\tan^{-1} x}{1+x^2} dx$$

    Let $$ z=\tan^{-1}x$$

    For $$x=0, z=\tan^{-1} 0=0$$ and for  $$x=1, z= \tan^{-1} 1=\dfrac{\pi}{4}$$

    $$\implies dz=\dfrac{1}{1+x^2} dx$$

    Hence, integration becomes-

    $$\displaystyle\int_{0}^{\dfrac{\pi}{4}} zdz$$

    $$= \left[\dfrac{z^2}{2}\right]_0^{\dfrac{\pi}{4}}$$

    $$=\dfrac{1}{2}\left [\dfrac{\pi ^2}{16}-0\right]$$

    $$=\dfrac{\pi ^2}{32}$$
  • Question 7
    1 / -0
    Evaluate: $$\displaystyle \int_{1}^{2}\frac{1}{x\sqrt{x^{2}-1}}d{x}$$
    Solution

    We need to find value of $$\displaystyle \int_{1}^{2}\dfrac{1}{x\sqrt{x^2-1}}dx$$
    We know that


    $$\displaystyle \int   \dfrac{1}{x\sqrt{x^2-1}}dx=\sec^{-1}x+c$$

    $$\displaystyle \int_{1}^{2}\dfrac{1}{x\sqrt{x^2-1}}dx= \sec^{-1}2-\sec^{-1}1$$

    $$\sec^{-1}2 =\dfrac{\pi}{3}$$

    and $$\sec^{-1}1=0$$

    So,  $$\sec^{-1}2-\sec^{-1}1=\dfrac{\pi}{3}$$


    $$\therefore \displaystyle \int_{1}^{2}\dfrac{1}{x\sqrt{x^2-1}}dx=\dfrac{\pi}{3}$$

  • Question 8
    1 / -0
    The value of $$\int_{0}^{\infty} x.e^{-x^{2}}dx_{=}$$
    Solution

    $$\int_{0}^{\infty}xe^{-x^2}dx=\dfrac{1}{2}\int_{0}^{\infty}e^{-x^2}dx^2$$
    $$=\dfrac{1}{2}\int_{0}^{\infty}e^{-x^2}dx^2=\dfrac{1}{2}\left [ -\dfrac{1}{e^{x^2}}+c \right ] \int_{0}^{\infty}$$
    $$=\dfrac{1}{2}\left [ (0+e)-(-1+e) \right ]$$
    $$=\dfrac{1}{2}$$
    $$\int_{0}^{\infty}xe^{-x^2}dx=\dfrac{1}{2}$$

  • Question 9
    1 / -0
    $$\displaystyle \int_{0}^{1}\frac{x^{2}}{1+x^{2}}dx$$ equals
    Solution

    $$\displaystyle \int_{0}^{1}\dfrac{x^2dx}{1+x^2}$$

    $$\displaystyle \int_{0}^{1}1{dx}-\displaystyle \int_{0}^{1}\dfrac{1}{1+x^2}dx$$

    $$=1-\left [ \tan^{-1}x \right ] \displaystyle \vert_{0}^{1}$$

    $$=1 - \left [ \tan^{-1}  1 \right ]$$

    $$=1 -\dfrac{\pi}{4}$$

    Thus $$\displaystyle \int_{0}^{1}\dfrac{x^2}{1+x^2}dx=1-\dfrac{\pi}{4}$$

  • Question 10
    1 / -0

    $$\displaystyle \int_{0}^{1}\frac{dx}{e^{x}+e^{-x}}=$$
    Solution

    $$\int_{0}^{1}\dfrac{e^x}{1+e^{2x}}dx=\int_{0}^{1}\dfrac{de^x}{1+e^{2x}}$$
    $$=tan^{-1}(e^x)\int_{0}^{1}$$
    $$=tan^{-1}(e)-tan^{-1}(e^{\circ})$$
    $$=tan^{-1}(e)-tan^{-1}(1)$$
    $$=tan^{-1}(e)-\dfrac{\pi}{4}$$
    So,   $$\int_{0}^{1}\dfrac{e^x}{1+e^{2x}}dx=tan^{-1}e-\dfrac{\pi}{4}$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now