Self Studies

Integrals Test - 17

Result Self Studies

Integrals Test - 17
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Evaluate the integral
    $$\displaystyle \int_{0}^{a}\sqrt{a^{2}-x^{2}}dx$$
    Solution
    $$\displaystyle \int_{0}^{a}\sqrt{a^2-x^2} dx$$
    $$\displaystyle \int \sqrt{a^2-x^2}dx=\frac{x}{2}\sqrt{a^2-x^2}+\frac{a^2}{2}\sin^{-1} (\frac{x}{a})+c$$
    $$\displaystyle \int_{0}^{a}\sqrt{a^2-x^2}\cdot dx=\left [ \frac{x}{2} \sqrt{a^2-x^2}+\frac{a^2}{2}\sin^{-1}\left ( \frac{x}{a} \right ) +c \right ]_{0}^{a}$$
    $$=\left [ \dfrac{a}{2} \sqrt{a^2-x^2}+\dfrac{a^2}{2}\sin^{-1}\left ( \dfrac{a}{a} \right ) +c \right ]-\left [ \dfrac{x}{2} \sqrt{a^2-x^2}+\dfrac{a^2}{2}\sin^{-1}\left ( \dfrac{0}{a} \right ) +c \right ]$$
    $$=\left [ \dfrac{a^2}{2} \sin^{-1}(1)+c \right]- \left [ \sqrt{a^2}+c \right ]$$
    $$=\dfrac{a^2}{2} \left ( \dfrac{\pi}{2} \right )$$
    $$=\dfrac{\pi a^2}{4}$$
  • Question 2
    1 / -0

    $$\displaystyle \int_{0}^{a}\frac{1}{a^{2}+x^{2}}dx_{=}$$
    Solution

    $$\int_{0}^{a}\dfrac{1}{a^2+x^2}dx$$

    $$\int \dfrac{1}{a^2+x^2}dx=\dfrac{1}{a^2}$$

    $$\int \dfrac{d(\dfrac{x}{a})}{1+(\dfrac{x}{a})^2}=\dfrac{1}{a}\int \dfrac{d(\dfrac{x}{a})}{1+(\dfrac{x}{a})^2}$$

    $$=\dfrac{1}{a}tan^{-1}(\dfrac{x}{a})+c$$

    $$\int_{0}^{a}\dfrac{1}{a^2+x^2}dx=\left [ \dfrac{1}{a} tan^{-1}\left ( \dfrac{x}{a} \right ) +c \right ] \int_{0}^{a}$$

    $$=\left [ \dfrac{1}{a}tan^{-1}\left ( \dfrac{a}{a} \right ) +c \right ] -(0+c)$$
    $$=\dfrac{1}{a}tan^{-1}(1)$$

    $$=\dfrac{1}{a}\cdot \dfrac{\pi}{4}$$

    $$=\dfrac{\pi}{4a}$$

  • Question 3
    1 / -0
    Evaluate the integral
    $$\displaystyle \int_{\frac{a}{2}}^{a}\frac{1}{\sqrt{a^{2}-x^{2}}}dx$$
    Solution

    $$\displaystyle \int_{a}^{\frac{a}{2}}\dfrac{1}{\sqrt{a^2-x^2}}\cdot dx$$

    $$\displaystyle \int \dfrac{1}{\sqrt{a^2-x^2}}\cdot dx=\dfrac{1}{a}\displaystyle \int \dfrac{1}{\sqrt{1-\left ( \dfrac{x}{a} \right )^2}}\cdot dx$$

    $$=\displaystyle \int \dfrac{d\left ( \dfrac{x}{a} \right )}{\sqrt{1-\left ( \dfrac{x}{a} \right )^2}}$$

    $$=\sin^{-1}(\dfrac{x}{a})+c$$

    $$\displaystyle \int_{\frac{a}{2}}^{a}\dfrac{1}{\sqrt{a^2-x^2}}\cdot =\left [ \sin^{-1}(\dfrac{x}{a})+c \right ] _{\frac{a}{2}}^{a}$$ 

    $$=(\sin^{-1}(\dfrac{a}{a})+c)-(\sin^{-1}(\dfrac{\frac{a}{2}}{a})+c)$$

    $$=\left [ (\sin (1)+c ) -(\sin^{-1}(\dfrac{1}{2})+c) \right ]$$

    $$=\dfrac{\pi}{2}-\dfrac{\pi}{6}$$

    $$=\dfrac{\pi}{3}$$

  • Question 4
    1 / -0
    Evaluate the integral
    $$\displaystyle \int_{0}^{1}\frac{x}{1+x^{2}}dx$$
    Solution

    $$\displaystyle \int_{0}^{1}\dfrac{x}{a+x^2}dx$$

    $$\displaystyle \int \dfrac{x}{1+x^2}dx=\dfrac{1}{2}\displaystyle \int \dfrac{dx^2}{1+x^2}=\dfrac{1}{2} \log (1+x^2)+c$$

    $$=\displaystyle \int_{0}^{1}\dfrac{x}{1+x^2}dx=\left [ \dfrac{1}{2} \log (1+x^2)+c \right ]_{0}^{1}$$

    $$=\left ( \dfrac{1}{2} \log (2)+c \right ) - \left ( \dfrac{1}{2} \log (1)+c\right )$$

    $$=\dfrac{1}{2} \log 2$$

    $$\displaystyle \int_{0}^{1}\dfrac{x}{1+x^2}dx=\dfrac{1}{2} \log 2$$

  • Question 5
    1 / -0

    The integral $$\displaystyle \int_{0}^{1}\frac{x^{3}}{1+x^{8}}dx=$$
    Solution

    Let $$\displaystyle I=\int_{0}^{1}\dfrac{x^3}{1+x^8} dx$$


    Now, $$\displaystyle \int \dfrac{x^3}{1+x^8 }dx =\dfrac{1}{4}\int \dfrac{d(x^4)}{1+x^8}=\dfrac{1}{4}\tan^{-1}(x^4)+c$$

    $$I=\displaystyle \int_{0}^{1}\dfrac{x^3}{1+x^8}dx=\left(\dfrac{1}{4}\tan^{-1}(x^4)+c\right)_{0}^{1}$$

    $$=\left [\dfrac{1}{4} \tan^{-1}(1)+c\right ]-\left [\dfrac{1}{4} \tan^{-1}(0)+c\right ]$$

    $$=\dfrac{1}{4} \tan^{-1}(1)$$

    $$=\dfrac{1}{4} \cdot \dfrac{\pi}{4}=\dfrac{\pi}{16}$$

    Hence, $$\displaystyle \int_{0}^{1}\dfrac{x^3}{1+x^8}dx =\dfrac{\pi}{16}$$

  • Question 6
    1 / -0

    $$\displaystyle \int_{0}^{1}\frac{1}{1+x}dx_{=}$$
    Solution
    $$\int_{0}^{1}\dfrac{1}{1+x}dx=\ln(1+x)+c$$
    $$\int_{0}^{1}\dfrac{1}{1+x}dx =\left [ \ln (1+x)+ c \right ]\int_{0}^{1}$$
    $$=(\ln(2)+c)-(\ln(1)+c)$$
    $$=\ln2$$
    $$\int_{0}^{1}\dfrac{1}{1+x}dx=ln2$$
  • Question 7
    1 / -0
    The integral $$\displaystyle \int_{0}^{1}\frac{(\mathrm{t}\mathrm{a}\mathrm{n}^{-1}{\mathrm{x})^{3}}}{1+\mathrm{x}^{2}}\mathrm{d}\mathrm{x}=$$
    Solution

    $$\displaystyle \int_{0}^{1}\dfrac{(\tan^{-1}x)^3}{1+x^2}dx$$

    $$\displaystyle \int \dfrac{(\tan^{-1}x)^3}{1+x^2}dx = \int (\tan^{-1}x)^3 d (\tan^{-1}x)$$

    $$=\dfrac{(\tan^{-1}x)^4}{4}+c$$

    $$\displaystyle \int_{0}^{1}\dfrac{(\tan^{-1}x)^3}{1+x^2}\cdot dx=\left ( \dfrac{(\tan^{-1}x)^4}{4}+c \right )_{0}^{1}$$

    $$=\left [ \dfrac{(\tan^{-1}1)^4}{4}+c \right ] - \left [ \dfrac{(\tan^{-1}0)^4}{4}+1 \right ] $$

    $$=\left [ \dfrac{\left(\dfrac{\pi}{4}\right)^4}{4}+c \right ] - [0+c]$$

    $$=\dfrac{\pi^4}{4^{5}}=\dfrac{\pi^4}{1024}$$

  • Question 8
    1 / -0

    $$\displaystyle \int_{0}^{1/2}\mathrm{e}^{\mathrm{x}}\left[ { s }{ i }{ n }^{ -1 }{ x }+\frac { 1 }{ \sqrt { 1-{ x }^{ 2 } }  }  \right] $$ dx $$=$$


    Solution
    $$\displaystyle \int_{0}^{\frac{1}{2}}e^x \left [ \sin^{-1}x +\dfrac{1}{\sqrt{1-x^2}} \right ] dx$$
    Consider, $$\displaystyle \int e^x \left ( \sin^{-1} x+\dfrac{1}{\sqrt{1-x^2}} \right ) dx$$
    It is in the form of $$\displaystyle \int e^x (f(x) + f'(x) )  dx$$
    $$=e^x f(x)+c$$

    $$\therefore \displaystyle \int_{0}^{\frac{1}{2}} e^x\left ( \sin^{-1}x+\dfrac{1}{\sqrt{1-x^2}} \right ) dx=\left[e^x \sin^{-1} x+c\right]_{0}^{\frac{1}{2}}$$
    $$=e^{\frac{1}{2}} \sin^{-1}\left(\dfrac{1}{2}\right) - ( e^{0} \sin^{-1}0)$$
    $$=e^{\frac{1}{2}} \cdot \dfrac{\pi}{6}=\dfrac{\pi\sqrt{e}}{6}$$
  • Question 9
    1 / -0

    The integral $$\displaystyle \int_{0}^{\pi/4} \displaystyle \frac{e^{\tan x}}{\cos^{2}x}dx=$$
    Solution

    Consider, $$I=\displaystyle \int_{0}^{\frac{\pi}{4}}\dfrac{e^{\tan x}}{\cos ^2  x}dx$$

    $$\displaystyle \int e^{\tan x}\cdot \sec ^2 x  dx =\int e^{\tan x}\cdot d({\tan x})$$

    $$=\int e^{\tan x} d(\tan  x )=e^{\tan x}+c$$

    $$\therefore \displaystyle \int_{0}^{\frac{\pi}{4}} \dfrac{e^{\tan x}}{\cos ^2 x}dx=\left ( e^{\tan x}+ c \right )_{0}^{\frac{\pi}{4}}$$

    $$=\left ( e^{\tan \frac{\pi}{4}}+c\right ) -\left ( e^{\tan 0}+c \right )$$

    $$=(e+c)-(1+c)$$

    $$=e-1$$

    Hence, $$\displaystyle \int_{0}^{\frac{\pi}{4}}\dfrac{e^{\tan x}}{\cos ^2  x}dx=e-1$$

  • Question 10
    1 / -0
    If  $$\displaystyle \int_{0}^{k}\frac{\cos x}{1+\sin^{2}x}dx=\frac{\pi}{4}$$ then $${k}=?$$
    Solution
    Let $$sin x = t$$
    Thus $$cos x dx = dt$$

    Substituting the values back in the integral and performing indefinite integration,
    $$ \displaystyle \int \dfrac{dt}{1 + {t}^{2}} $$

    $$=$$ $$ {tan}^{-1}t + c $$

    Substituting the value of t, 
    $$=$$ $$ {tan}^{-1}(sin x) + c $$

    Putting in the limits,
    $$=$$ $$ {tan}^{-1}(sin k) - {tan}^{-1} 0 = \dfrac{\pi}{4} $$

    $$=$$ $$ {tan}^{-1}(sin k) - 0 = \dfrac{\pi}{4} $$

    $$ sin k = tan \dfrac{\pi}{4} $$

    $$= sin k = 1$$

    or$$ k =  \dfrac{\pi}{2} $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now