Self Studies

Integrals Test - 18

Result Self Studies

Integrals Test - 18
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    01tanhxdx=\displaystyle \int_{0}^{1}\tanh xdx=
    Solution

    01tan hx  dx\int_{0}^{1} tan  h x   dx
    tan h x dx=exexex+exdx=log(ex+ex)+c\int tan  h  x  dx=\int \dfrac{e^x-e^{-x}}{e^x+e^{-x}} dx =log (e^x+e^{-x})+c
    01tan hx dx=log(ex+ex)+c01\int_{0}^{1} tan  h x  dx = log (e^x+e^{-x})+c \int_{0}^{1}
    =(log(e+1e)+c)(log(2)+c)=\left ( log (e+\dfrac{1}{e}) +c \right ) - \left ( log (2)+c \right )
    =log(e+1e)log2=log (e+\dfrac{1}{e})-log 2
    =log(e2+12e)=log (\dfrac{e}{2}+\dfrac{1}{2e})
    01tan hx dx=log(e2+12e)\int_{0}^{1}tan  hx  dx=log (\dfrac{e}{2}+\dfrac{1}{2e})

  • Question 2
    1 / -0
    Evaluate the integral
    1e(lnx)3xdx\displaystyle \int_{1}^{e}\frac{(\ln x)^{3}}{x}dx
    Solution
    1e(lnx)3xdx\displaystyle \int_{1}^{e}\frac{(ln x)^3}{x}dx
    1e(lnx)3d(lnx)=(lnx)44+c\displaystyle \int_{1}^{e}(ln x)^3d(ln x)=\frac{(ln x)^4}{4}+c
    1e(lnx)3d(lnx)=((1)44+c)(04+c)\displaystyle \int_{1}^{e}(ln x)^3d(ln x)=\left ( \frac{(1)^4}{4}+c \right ) - \left ( \frac{0}{4}+ c \right )
    =14=\dfrac{1}{4}
    Thus 1e(lnx)3xdx=14\displaystyle \int_{1}^{e}\frac{(ln x)^3}{x}dx=\frac{1}{4}
  • Question 3
    1 / -0

    0πtanxsecx+cosxdx=\displaystyle \int_{0}^{\pi}\frac{\tan x}{\sec x+\cos x}dx_{=}
    Solution

    0πtan xsec x+cos xdx\int_{0}^{\pi}\dfrac{\tan  x}{\sec  x+\cos  x}dx

    tan xsec x+cos xdx=d (sec x)1+sec2x\int \dfrac{\tan  x}{\sec  x+\cos  x}dx=\int \dfrac{d  (\sec  x)}{1+\sec ^2 x}

    =tan1(sec x)+c=\tan ^{-1}(\sec  x)+c

    0πtan xsec x+cos xdx=[tan (sec x)+c]0π\int_{0}^{\pi}\dfrac{\tan  x}{\sec  x+\cos  x}dx=\left [ \tan  (\sec  x)+c \right ] |_{0}^{\pi}

    =(tan1(sec π)+c)[tan1(sec 0)]=(\tan ^{-1}(\sec  \pi)+c)- [ \tan ^{-1}(\sec  0) ]

    =π2=-\dfrac{\pi}{2}

  • Question 4
    1 / -0

    01ex(ex+1)3dx=\displaystyle \int_{0}^{1}\mathrm{e}^{\mathrm{x}}(\mathrm{e}^{\mathrm{x}}+1)^{3}\mathrm{d}\mathrm{x}=
    Solution
    Let D = 01ex(ex+1)3dx\int_{0}^{1}e^x(e^x+1)^3dx
    Consider I=ex(ex+1)3dx=(ex+1)3ex.dx=(ex+1)44+cI = \int e^x(e^x+1)^3dx=\int (e^x+1)^3e^x.dx=\frac{(e^x+1)^4}{4}+c
    I=ex(ex+1)3dx=(ex+1)44+cI = \int e^x(e^x+1)^3dx=\frac{(e^x+1)^4}{4}+c
    D=01ex(ex+1)3dxD = \int_0^1 e^x(e^x+1)^3dx
        =(e1+1)444= \cfrac{(e^1+1)^4}{4} - 4
    Thus, 01ex(ex+1)3dx=(e+1)444\int_{0}^{1}e^x(e^x+1)^3dx=\frac{(e+1)^4}{4}-4
  • Question 5
    1 / -0
    Evaluate: 815x1+x2.dx\displaystyle \int_{\sqrt{8}}^{\sqrt{15}}x\sqrt{1+x^{2}}.dx
    Solution
    815x1+x2dx\displaystyle\int_{\sqrt{8}}^{\sqrt{15}} x\sqrt{1+x^2} dx

    Let z=1+x2z=1+x^2

        dz=2xdx\implies dz=2xdx
        xdx=dz2\implies xdx=\dfrac{dz}{2}

    For, x=8, z=9x=\sqrt{8},  z=9 and for x=15,z=16 x=\sqrt{15}, z=16

    Hence, integration becomes-

    916zdz2\displaystyle\int_{9}^{16} \sqrt{z} \dfrac{dz}{2}

    $$=\dfrac{1}{2} \left[\dfrac{z^\left(\tfrac{1}{2}+1\right)}{\dfrac{1}{2}+1}\right]_{9}^{16}$$

    $$=\dfrac{1}{2}\times \dfrac{2}{3} \displaystyle\left[z^\left(\tfrac{3}{2}\right)\right]_{9}^{16}$$


    $$= \dfrac{1}{3} \displaystyle\left[16^\left(\tfrac{3}{2}\right)-9^\left(\tfrac{3}{2}\right)  \right]$$

    =13[6427]=\dfrac{1}{3} [64-27]

    =373=\dfrac{37}{3}
  • Question 6
    1 / -0

    01xdx(x2+1)2=\displaystyle \int_{0}^{1}\frac{xdx}{(x^{2}+1)^{2}}=
    Solution

    01x dx(x2+1)2\int_{0}^{1}\dfrac{x  dx}{(x^2+1)^2}
    x dx(x2+1)2=12dx2(1+x2)2=12(11+x2)1\int \dfrac{x  dx}{(x^2+1)^2} =\dfrac{1}{2}\int \dfrac{dx^2}{(1+x^2)^2}=-\dfrac{1}{2}\left ( \dfrac{1}{1+x^2} \right )^{-1}
    =12(1+x2)+c=-\dfrac{1}{2}(1+x^2)^{+c}
    =01x dx(x2+1)2=[12(1+x2)+c]01=\int_{0}^{1}\dfrac{x  dx}{(x^2+1)^2}=\left [ -\dfrac{1}{2} (1+x^2)+c \right ] \int_{0}^{1}
    =[12(2)+c][12+c]=\left [ -\dfrac{1}{2} (2)+c \right ] - \left [ -\dfrac{1}{2}+c \right ]
    =14+12=14=-\dfrac{1}{4}+\dfrac{1}{2} =\dfrac{1}{4}
    01x dx(x2+1)2=14\int_{0}^{1}\dfrac{x  dx}{(x^2+1)^2}=\dfrac{1}{4}

  • Question 7
    1 / -0
    Evaluate: 0π2esin2xsin2xdx\displaystyle \int_{0}^{\dfrac{\pi}{2}}e^{\sin^2 x}\sin 2xdx
    Solution
    0π2esin2xsin2xdx \displaystyle\int_{0}^{\dfrac{\pi}{2}} e^{\sin^2 x} \sin{2x} dx

    Let z=sin2xz=\sin^2 x
        dz=2sinxcosxdx=sin2xdx\implies dz=2\sin{x} \cos{x}dx=\sin{2x}dx

    For x=0,z=0x=0, z=0 and for x=π2,z=1x=\dfrac{\pi}{2} ,z=1.

    Hence, integration becomes-

    01ezdz\displaystyle\int_{0}^{1} e^z dz

    =[ez]01=\left[e^z\right]_{0}^{1}

    =e1=e-1
  • Question 8
    1 / -0

    0416x2dX=\displaystyle \int_{0}^{4}\sqrt{16-x^{2}}d_{X}=
    Solution
    0416x2 dx\int_{0}^{4}\sqrt{16-x^2}  dx
    16x2 dx=42x2dx\int \sqrt{16-x^2}  dx =\int \sqrt{4^2-x^2}dx
    =x216x2+162sin1(x14)+c=\frac{x}{2} \sqrt{16-x^2}+ \frac{16}{2} sin^{-1} (\frac{x}{14})+c
    =0416x2dx [x216x2+162sin1(x4)+c]04=\int_{0}^{4}\sqrt{16-x^2}dx  \left [ \frac{x}{2} \sqrt{16-x^2}+ \frac{16}{2}sin^{-1}\left ( \frac{x}{4} \right ) +c \right ]\int_{0}^{4}
    =(421616+8sin1(44)+c)(0+0+c)=\left ( \frac{4}{2}\sqrt{16-16}+ 8 sin^{-1}\left ( \frac{4}{4}\right ) +c\right )- (0+0+c)
    =8(π2)=4π=8\left ( \dfrac{\pi}{2} \right ) =4\pi
    0416x2dx=4π\int_{0}^{4}\sqrt{16-x^2}dx=4\pi
  • Question 9
    1 / -0

    Find 0π2sec2xdx(secx+tanx)n\displaystyle \int_{0}^{\frac{\pi}{2}}\frac{\sec^{2}xdx}{(\sec x+\tan x)^{n}}, where (n>2)(\mathrm{n}>2)
    Solution
    Let  I=0π 2 sec2x (secx+tanx  ) n dx\displaystyle I=\int _{ 0 }^{ \dfrac { \pi  }{ 2 }  }{ \dfrac { \sec ^{ 2 }{ x }  }{ { \left( \sec { x+\tan { x }  }  \right)  }^{ n } }  } dx
    Substitute secx+tanx=t(secxtanx+sec2x  )dx=dt\sec { x } +\tan { x } =t\Rightarrow \left( \sec { x\tan { x } +\sec ^{ 2 }{ x }  }  \right) dx=dt
     secxdx=dtt\displaystyle \Rightarrow \sec { x } dx=\dfrac { dt }{ t }
     secxtanx=1tsecx=12(t+1t )\displaystyle \therefore \sec { x } -\tan { x } =\dfrac { 1 }{ t } \Rightarrow \sec { x } =\dfrac { 1 }{ 2 } \left( t+\dfrac { 1 }{ t }  \right)
     I=121 (t1t )dtt tn =121 (1tn+1t+n12 ) dt\displaystyle \therefore I=\dfrac { 1 }{ 2 } \int _{ 1 }^{ \infty  }{ \dfrac { \left( t-\dfrac { 1 }{ t }  \right) \dfrac { dt }{ t }  }{ { t }^{ n } }  } =\dfrac { 1 }{ 2 } \int _{ 1 }^{ \infty  }{ \left( \dfrac { 1 }{ { t }^{ n } } +\dfrac { 1 }{ { t }^{ +n-12 } }  \right)  } dt

     =12[1(1n)tn1+1(n+1)tn+1 ]0 =nn21\displaystyle =\dfrac { 1 }{ 2 } \left[ \dfrac { 1 }{ \left( 1-n \right) { t }^{ n-1 } } +\dfrac { 1 }{ \left( n+1 \right) { t }^{ n+1 } }  \right] _{ 0 }^{ \infty  }=\dfrac { n }{ { n }^{ 2 }-1 }
  • Question 10
    1 / -0
    0π/2dX4cos2x+9sin2x=\displaystyle \int_{0}^{\pi/2}\frac{d_{X}}{4\cos^{2}x+9\sin^{2}x}=
    Solution

    0π2dx4 cos2x + 9 sec2 x\int_{0}^{\dfrac{\pi}{2}}\dfrac{dx}{4  cos^2 x  +  9  sec^2  x}
    dx4 cos2 x +9sec2 x=sec2x dx4+9 tan2 x=d(tan x)4+9 tan2 x\int \dfrac{dx}{4  cos^2  x  + 9 sec^2  x}=\int \dfrac{sec^2 x  dx} {4+9  tan^2  x}=\int \dfrac{d(tan  x)}{4+9  tan^2  x}
    =14tan1(32tan x) 23+c=\dfrac{1}{4} tan^{-1}\left ( \dfrac{3}{2} tan  x \right )  \dfrac{2}{3} +c
    =16tan1(32tanx) +c=\dfrac{1}{6} tan^{-1}\left ( \dfrac{3}{2} tan x \right )  +c
    0π2dx4 cos2x + 9 sec2 x=[16tan1(32tan x)+c]0π2\int_{0}^{\dfrac{\pi}{2}}\dfrac{dx}{4  cos^2 x  +  9  sec^2  x}=\left [ \dfrac{1}{6} tan^{-1}\left ( \dfrac{3}{2} tan  x \right ) +c \right ]\int_{0}^{\dfrac{\pi}{2}}
    =(16tan1(32tanπ2)+c](16tan1(0)+c)=\left (\dfrac{1}{6} tan^{-1}\left ( \dfrac{3}{2} tan \dfrac{\pi}{2} \right ) +c \right ]- \left ( \dfrac{1}{6}tan^{-1}(0)+c \right )
    =16×π2=π12=\dfrac{1}{6}\times \dfrac{\pi}{2}=\dfrac{\pi}{12}

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now