Self Studies

Integrals Test - 18

Result Self Studies

Integrals Test - 18
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    $$\displaystyle \int_{0}^{1}\tanh xdx=$$
    Solution

    $$\int_{0}^{1} tan  h x   dx$$
    $$\int tan  h  x  dx=\int \dfrac{e^x-e^{-x}}{e^x+e^{-x}} dx =log (e^x+e^{-x})+c$$
    $$\int_{0}^{1} tan  h x  dx = log (e^x+e^{-x})+c \int_{0}^{1}$$
    $$=\left ( log (e+\dfrac{1}{e}) +c \right ) - \left ( log (2)+c \right )$$
    $$=log (e+\dfrac{1}{e})-log 2$$
    $$=log (\dfrac{e}{2}+\dfrac{1}{2e})$$
    $$\int_{0}^{1}tan  hx  dx=log (\dfrac{e}{2}+\dfrac{1}{2e})$$

  • Question 2
    1 / -0
    Evaluate the integral
    $$\displaystyle \int_{1}^{e}\frac{(\ln x)^{3}}{x}dx $$
    Solution
    $$\displaystyle \int_{1}^{e}\frac{(ln x)^3}{x}dx$$
    $$\displaystyle \int_{1}^{e}(ln x)^3d(ln x)=\frac{(ln x)^4}{4}+c$$
    $$\displaystyle \int_{1}^{e}(ln x)^3d(ln x)=\left ( \frac{(1)^4}{4}+c \right ) - \left ( \frac{0}{4}+ c \right )$$
    $$=\dfrac{1}{4}$$
    Thus $$\displaystyle \int_{1}^{e}\frac{(ln x)^3}{x}dx=\frac{1}{4}$$
  • Question 3
    1 / -0

    $$\displaystyle \int_{0}^{\pi}\frac{\tan x}{\sec x+\cos x}dx_{=}$$
    Solution

    $$\int_{0}^{\pi}\dfrac{\tan  x}{\sec  x+\cos  x}dx$$

    $$\int \dfrac{\tan  x}{\sec  x+\cos  x}dx=\int \dfrac{d  (\sec  x)}{1+\sec ^2 x}$$

    $$=\tan ^{-1}(\sec  x)+c$$

    $$\int_{0}^{\pi}\dfrac{\tan  x}{\sec  x+\cos  x}dx=\left [ \tan  (\sec  x)+c \right ] |_{0}^{\pi}$$

    $$=(\tan ^{-1}(\sec  \pi)+c)- [ \tan ^{-1}(\sec  0) ]$$

    $$=-\dfrac{\pi}{2}$$

  • Question 4
    1 / -0

    $$\displaystyle \int_{0}^{1}\mathrm{e}^{\mathrm{x}}(\mathrm{e}^{\mathrm{x}}+1)^{3}\mathrm{d}\mathrm{x}=$$
    Solution
    Let D = $$\int_{0}^{1}e^x(e^x+1)^3dx$$
    Consider $$I = \int e^x(e^x+1)^3dx=\int (e^x+1)^3e^x.dx=\frac{(e^x+1)^4}{4}+c$$
    $$I = \int e^x(e^x+1)^3dx=\frac{(e^x+1)^4}{4}+c$$
    $$D = \int_0^1 e^x(e^x+1)^3dx$$
        $$= \cfrac{(e^1+1)^4}{4} - 4$$
    Thus, $$\int_{0}^{1}e^x(e^x+1)^3dx=\frac{(e+1)^4}{4}-4$$
  • Question 5
    1 / -0
    Evaluate: $$\displaystyle \int_{\sqrt{8}}^{\sqrt{15}}x\sqrt{1+x^{2}}.dx$$
    Solution
    $$\displaystyle\int_{\sqrt{8}}^{\sqrt{15}} x\sqrt{1+x^2} dx$$

    Let $$z=1+x^2$$

    $$\implies dz=2xdx$$
    $$\implies xdx=\dfrac{dz}{2}$$

    For, $$x=\sqrt{8},  z=9$$ and for $$ x=\sqrt{15}, z=16$$

    Hence, integration becomes-

    $$\displaystyle\int_{9}^{16} \sqrt{z} \dfrac{dz}{2}$$

    $$=\dfrac{1}{2} \left[\dfrac{z^\left(\tfrac{1}{2}+1\right)}{\dfrac{1}{2}+1}\right]_{9}^{16}$$

    $$=\dfrac{1}{2}\times \dfrac{2}{3} \displaystyle\left[z^\left(\tfrac{3}{2}\right)\right]_{9}^{16}$$


    $$= \dfrac{1}{3} \displaystyle\left[16^\left(\tfrac{3}{2}\right)-9^\left(\tfrac{3}{2}\right)  \right]$$

    $$=\dfrac{1}{3} [64-27]$$

    $$=\dfrac{37}{3}$$
  • Question 6
    1 / -0

    $$\displaystyle \int_{0}^{1}\frac{xdx}{(x^{2}+1)^{2}}=$$
    Solution

    $$\int_{0}^{1}\dfrac{x  dx}{(x^2+1)^2}$$
    $$\int \dfrac{x  dx}{(x^2+1)^2} =\dfrac{1}{2}\int \dfrac{dx^2}{(1+x^2)^2}=-\dfrac{1}{2}\left ( \dfrac{1}{1+x^2} \right )^{-1}$$
    $$=-\dfrac{1}{2}(1+x^2)^{+c}$$
    $$=\int_{0}^{1}\dfrac{x  dx}{(x^2+1)^2}=\left [ -\dfrac{1}{2} (1+x^2)+c \right ] \int_{0}^{1}$$
    $$=\left [ -\dfrac{1}{2} (2)+c \right ] - \left [ -\dfrac{1}{2}+c \right ]$$
    $$=-\dfrac{1}{4}+\dfrac{1}{2} =\dfrac{1}{4}$$
    $$\int_{0}^{1}\dfrac{x  dx}{(x^2+1)^2}=\dfrac{1}{4}$$

  • Question 7
    1 / -0
    Evaluate: $$\displaystyle \int_{0}^{\dfrac{\pi}{2}}e^{\sin^2 x}\sin 2xdx$$
    Solution
    $$ \displaystyle\int_{0}^{\dfrac{\pi}{2}} e^{\sin^2 x} \sin{2x} dx$$

    Let $$z=\sin^2 x$$
    $$\implies dz=2\sin{x} \cos{x}dx=\sin{2x}dx$$

    For $$x=0, z=0$$ and for $$x=\dfrac{\pi}{2} ,z=1$$.

    Hence, integration becomes-

    $$\displaystyle\int_{0}^{1} e^z dz$$

    $$=\left[e^z\right]_{0}^{1}$$

    $$=e-1$$
  • Question 8
    1 / -0

    $$\displaystyle \int_{0}^{4}\sqrt{16-x^{2}}d_{X}=$$
    Solution
    $$\int_{0}^{4}\sqrt{16-x^2}  dx$$
    $$\int \sqrt{16-x^2}  dx =\int \sqrt{4^2-x^2}dx$$
    $$=\frac{x}{2} \sqrt{16-x^2}+ \frac{16}{2} sin^{-1} (\frac{x}{14})+c$$
    $$=\int_{0}^{4}\sqrt{16-x^2}dx  \left [ \frac{x}{2} \sqrt{16-x^2}+ \frac{16}{2}sin^{-1}\left ( \frac{x}{4} \right ) +c \right ]\int_{0}^{4}$$
    $$=\left ( \frac{4}{2}\sqrt{16-16}+ 8 sin^{-1}\left ( \frac{4}{4}\right ) +c\right )- (0+0+c)$$
    $$=8\left ( \dfrac{\pi}{2} \right ) =4\pi$$
    $$\int_{0}^{4}\sqrt{16-x^2}dx=4\pi$$
  • Question 9
    1 / -0

    Find $$\displaystyle \int_{0}^{\frac{\pi}{2}}\frac{\sec^{2}xdx}{(\sec x+\tan x)^{n}}$$, where $$(\mathrm{n}>2)$$
    Solution
    Let $$\displaystyle I=\int _{ 0 }^{ \dfrac { \pi  }{ 2 }  }{ \dfrac { \sec ^{ 2 }{ x }  }{ { \left( \sec { x+\tan { x }  }  \right)  }^{ n } }  } dx$$
    Substitute $$\sec { x } +\tan { x } =t\Rightarrow \left( \sec { x\tan { x } +\sec ^{ 2 }{ x }  }  \right) dx=dt$$
    $$\displaystyle \Rightarrow \sec { x } dx=\dfrac { dt }{ t } $$
    $$\displaystyle \therefore \sec { x } -\tan { x } =\dfrac { 1 }{ t } \Rightarrow \sec { x } =\dfrac { 1 }{ 2 } \left( t+\dfrac { 1 }{ t }  \right) $$
    $$\displaystyle \therefore I=\dfrac { 1 }{ 2 } \int _{ 1 }^{ \infty  }{ \dfrac { \left( t-\dfrac { 1 }{ t }  \right) \dfrac { dt }{ t }  }{ { t }^{ n } }  } =\dfrac { 1 }{ 2 } \int _{ 1 }^{ \infty  }{ \left( \dfrac { 1 }{ { t }^{ n } } +\dfrac { 1 }{ { t }^{ +n-12 } }  \right)  } dt$$

    $$\displaystyle =\dfrac { 1 }{ 2 } \left[ \dfrac { 1 }{ \left( 1-n \right) { t }^{ n-1 } } +\dfrac { 1 }{ \left( n+1 \right) { t }^{ n+1 } }  \right] _{ 0 }^{ \infty  }=\dfrac { n }{ { n }^{ 2 }-1 } $$
  • Question 10
    1 / -0
    $$\displaystyle \int_{0}^{\pi/2}\frac{d_{X}}{4\cos^{2}x+9\sin^{2}x}=$$
    Solution

    $$\int_{0}^{\dfrac{\pi}{2}}\dfrac{dx}{4  cos^2 x  +  9  sec^2  x}$$
    $$\int \dfrac{dx}{4  cos^2  x  + 9 sec^2  x}=\int \dfrac{sec^2 x  dx} {4+9  tan^2  x}=\int \dfrac{d(tan  x)}{4+9  tan^2  x}$$
    $$=\dfrac{1}{4} tan^{-1}\left ( \dfrac{3}{2} tan  x \right )  \dfrac{2}{3} +c$$
    $$=\dfrac{1}{6} tan^{-1}\left ( \dfrac{3}{2} tan x \right )  +c$$
    $$\int_{0}^{\dfrac{\pi}{2}}\dfrac{dx}{4  cos^2 x  +  9  sec^2  x}=\left [ \dfrac{1}{6} tan^{-1}\left ( \dfrac{3}{2} tan  x \right ) +c \right ]\int_{0}^{\dfrac{\pi}{2}}$$
    $$=\left (\dfrac{1}{6} tan^{-1}\left ( \dfrac{3}{2} tan \dfrac{\pi}{2} \right ) +c \right ]- \left ( \dfrac{1}{6}tan^{-1}(0)+c \right )$$
    $$=\dfrac{1}{6}\times \dfrac{\pi}{2}=\dfrac{\pi}{12}$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now