Self Studies

Integrals Test - 21

Result Self Studies

Integrals Test - 21
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Evaluate: $$\displaystyle \int_{1/3}^{1}\frac{(x-x^{3})^{1/3}}{x^{4}}dx$$.
    Solution

    $$\displaystyle \int_{\frac {1}{3}}^{1} \dfrac {(x – x^{3})^{\frac {1}{3}}}{x^{4}} dx = \int_{\frac {1}{3}}^{1} \frac {(x^{3})^{\frac {1}{3}} \left (\dfrac {1}{x^{2}} – 1\right )^{\frac {1}{3}}}{x^{4}} dx$$

    $$\displaystyle = \int_{\dfrac {1}{3}}^{1} \dfrac {\left (\dfrac {1}{x^{2}} – 1\right )^{\frac {1}{3}}}{x^{3}} dx$$           (let $$\dfrac {1}{x^{2}} – 1 = t$$)

    $$\displaystyle = \int_{8}^{0} \dfrac{t^{\frac{1}{3}}}{-2} dt$$    $$\therefore \dfrac {-2}{x^{3}} dx = dt$$

    $$= -\dfrac {1}{2}\left (\dfrac {t^{4/3}}{4/3}\right )_{8}^{0} = 6$$.
  • Question 2
    1 / -0
    Evaluate the integral
    $$I=\displaystyle \int _{ 0 }^{ \frac { 1 }{ \sqrt { 2 }  }  }{ \cfrac { { sin }^{ -1 }x }{ { \left( 1-{ x }^{ 2 } \right)  }^{ \frac { 3 }{ 2 }  } } dx }  $$
    Solution
    $$I=\displaystyle \int _{ 0 }^{ \cfrac { 1 }{ \sqrt { 2 }  }  }{ \cfrac { { sin }^{ -1 }x }{ { \left( 1-{ x }^{ 2 } \right)  }^{ \cfrac { 3 }{ 2 }  } } dx }  $$
    Substituting $$x=sint\Rightarrow dx=costdt$$
    $$I=\displaystyle \int _{ 0 }^{ \cfrac { \pi  }{ 4 }  }{ \cfrac { tcostdt }{ cost-{ sin }^{ 2 }tcost }  } =\displaystyle \int _{ 0 }^{ \cfrac { \pi  }{ 4 }  }{ t{ sec }^{ 2 }t } dt\\ ={ \left[ ttant \right]  }_{ 0 }^{ \cfrac { \pi  }{ 4 }  }-\displaystyle \int _{ 0 }^{ \cfrac { \pi  }{ 4 }  }{ tant } dt=\cfrac { \pi  }{ 4 } -0-{ \left[ -\log { \left( cosx \right)  }  \right]  }_{ 0 }^{ \cfrac { \pi  }{ 4 }  }\\ =\cfrac { \pi  }{ 4 } +\log { \cfrac { 1 }{ \sqrt { 2 }  }  } =\cfrac { \pi  }{ 4 } -\cfrac { 1 }{ 2 } log2$$
  • Question 3
    1 / -0

    $$\displaystyle \int_{\log 2}^{t}\frac{d_{X}}{\sqrt{e^{x}-1}}=\frac{\pi}{6}$$, then $$\mathrm{t}=$$
    Solution
    Let $$I=\int { \cfrac { dx }{ \sqrt { { e }^{ x }-1 }  }  } $$
    substitute $$u={ e }^{ x }\Rightarrow du={ e }^{ x }dx$$, we get
    $$I=\int { \cfrac { 1 }{ u\sqrt { u-1 }  } du } $$
    Substitute $$s=u-1\Rightarrow ds=du$$, we get
    $$I=\int { \cfrac { ds }{ \sqrt { s } \left( s+1 \right)  }  } $$
    Substitute $$p=\sqrt { s } \Rightarrow dp=\cfrac { 1 }{ 2\sqrt { s }  } ds$$, we get
    $$I=2\int { \cfrac { 1 }{ { p }^{ 2 }+1 }  } =2{ tan }^{ -1 }p=2{ tan }^{ -1 }\sqrt { s } =2{ tan }^{ -1 }\sqrt { u-1 } $$
    $$=2{ tan }^{ -1 }\sqrt { { e }^{ x }-1 } $$
    Therefore,
    $$\int _{ \log { 2 }  }^{ t }{ \cfrac { dx }{ \sqrt { { e }^{ x }-1 }  }  } =\cfrac { \pi  }{ 6 } \\ \Rightarrow { \left[ 2{ tan }^{ -1 }\sqrt { { e }^{ x }-1 }  \right]  }_{ \log { 2 }  }^{ t }=\cfrac { \pi  }{ 6 } \Rightarrow 2{ tan }^{ -1 }\sqrt { { e }^{ t }-1 } -2{ tan }^{ -1 }1=\cfrac { \pi  }{ 6 } \\ \Rightarrow 2{ tan }^{ -1 }\sqrt { { e }^{ t }-1 } -\cfrac { \pi  }{ 2 } =\cfrac { \pi  }{ 6 } \Rightarrow { tan }^{ -1 }\sqrt { { e }^{ t }-1 } =\cfrac { \pi  }{ 3 } \\ \Rightarrow { e }^{ t }-1=3\Rightarrow t=\log { 4 } $$

  • Question 4
    1 / -0
    Evaluate: $$\displaystyle \int_{0}^{1} \cos$$ $$\left(2 \cot^{-1}\sqrt{\displaystyle \frac{1- {x}}{1+ {x}}}\right)dx $$
    Solution
    Let, $$x=\cos\theta\implies dx=-sin\theta d\theta$$
    And, $$\theta=\cos^{-1}x$$
    At, $$x=0, \theta=\dfrac{\pi}{2}$$ and at $$x=1,\theta=0$$

    Now,  $$\sqrt{\dfrac{1-x}{1+x}}=\sqrt{\dfrac{1-\cos\theta}{1+\cos\theta}}$$

    $$=\sqrt{\dfrac{2\sin^2\dfrac{\theta}{2}}{2\cos^2\dfrac{\theta}{2}}}$$

    $$=\tan\dfrac{\theta}{2}=\cot\left(\dfrac{\pi}{2}-\dfrac{\theta}{2}\right)$$

    $$\implies 2\cot^{-1}\sqrt{\dfrac{1-x}{1+x}}=(\pi-\theta)$$

    Hence, integration becomes:-

    $$\displaystyle\int_{\pi/2}^{0} \cos(\pi-\theta)(-\sin\theta)d\theta$$

    $$= \displaystyle\int_{\pi/2}^{0}\sin\theta \cos\theta d\theta$$

    $$= \dfrac{1}{2}\displaystyle\int_{\pi/2}^{0}\sin{2\theta}.d\theta$$

    $$= \dfrac{-1}{4} \left[\cos{2\theta}\right]_{\pi/2}^{0}$$

    $$=\dfrac{-1}{4}(1+1)=\dfrac{-1}{2}$$

    Answer-(A)
  • Question 5
    1 / -0
    Evaluate: $$\displaystyle \int_{0}^{\pi /2} \sin^{3}x.\cos^{3}x dx$$
    Solution
    $$\displaystyle\int_{0}^{\pi/2} \sin^3{x}.\cos^3{x} dx$$

    $$=\displaystyle\int_{0}^{\pi/2} \sin^3{x}.\cos^2{x}.\cos{x}dx$$

    $$=\displaystyle\int_{0}^{\pi/2} \sin^3{x}(1-\sin^2{x})\cos{x}dx$$

    $$=\displaystyle\int_{0}^{\pi/2} \sin^3{x} \cos{x} dx- \displaystyle\int_{0}^{\pi/2} \sin^5{x} \cos{x}dx$$
    $$=I_1-I_2 $$          (let)

    Now  let $$t=\sin{x}$$     $$\implies dt=\cos{x}dx$$

    And at $$ x=0, t=0 $$ and at $$ x=\dfrac{\pi}{2}, t=1$$

    $$ \displaystyle\int_{0}^{1} t^3dt-\displaystyle\int_{0}^{1} t^5 dt$$

    $$=\left[\dfrac{t^4}{4}\right]_{0}^{1}- \left[\dfrac{t^6}{6}\right]_{0}^{1}$$

    $$=\left(\dfrac{1}{4}-\dfrac{1}{6}\right)=\dfrac{1}{12}$$
  • Question 6
    1 / -0

    lf $$0<\mathrm{a}<\mathrm{c},\ 0<\mathrm{b}<\mathrm{c}$$ then $$\displaystyle \int_{0}^{\infty}\frac{a^{x}-b^{x}}{c^{x}}dx=$$
    Solution

    $$\int_{0}^{\infty}\left ( \dfrac{a^x}{c^x}-\dfrac{b^x}{c^x} \right ) dx$$
    $$=\int_{0}^{\infty}\left ( \dfrac{a}{c} \right )^xdx-\int_{0}^{\infty}\left ( \dfrac{b}{c}\right )^x dx$$
    $$=\dfrac{(\dfrac{a}{c})^x}{log (\dfrac{a}{c})}\int_{0}^{\infty}-\dfrac{(\dfrac{b}{c})^x}{log (\dfrac{b}{c})}\int_{0}^{\infty}$$
    $$=\left [ 1-\dfrac{1}{log(\dfrac{a}{c})} \right ] - \left [ 1-\dfrac{1}{log(\dfrac{b}{c})}\right ]$$
    $$=\dfrac{1}{log(\dfrac{b}{c})}-\dfrac{1}{log(\dfrac{a}{c})}$$

  • Question 7
    1 / -0

    $$\displaystyle \int_{0}^{1}\frac{xe^{x}}{(x+1)^{2}}dx=$$
    Solution

    $$\displaystyle \int_{0}^{1}e^x\left ( \dfrac{1}{(x=+1)}-\dfrac{1}{(x+1)^2}\right ) dx$$

    It is in the form of

    $$\displaystyle \int  e^x \left [ f(x)+f^1 (x) \right ]  dx=e^x f(x)+c$$

    $$=\left [ \dfrac{e^x}{(1+x)}+c \right ] _{0}^{1}$$

    $$=\dfrac{e}{2}-1$$

    $$=\dfrac{e}{2}-1$$

  • Question 8
    1 / -0

    The solution of the equation $$\displaystyle \int_{\sqrt{2}}^{\mathrm{x}}\frac{\mathrm{d}\mathrm{x}}{\mathrm{x}\sqrt{\mathrm{x}^{2}-1}}=\frac{\pi}{12}$$ is
    Solution

    $$\int_{\sqrt{2}}^{x}\dfrac{dx}{x\sqrt{x^2-1}}=\dfrac{\pi}{2}$$
    $$=\left ( sin^{-1}x+c \right ) \int_{\sqrt{2}}^{x}=\dfrac{\pi}{2}$$
    $$\left ( sec^{-1}x - sec^{-1}\sqrt{2} \right ) =\dfrac{\pi}{2}$$
    $$sec^{-1}x- \dfrac{\pi}{4}=\dfrac{\pi}{12}$$
    $$sec^{-1}x =\dfrac{\pi}{12}+\dfrac{3\pi}{12}$$
    $$sec^{-1}=\dfrac{\pi}{3}$$
    $$x=sec  \dfrac{\pi}{3}$$
    $$=2$$

  • Question 9
    1 / -0
    Evaluate the integral
    $$\displaystyle \int_{0}^{1}\frac{ {d} {x}}{ {x}^{2}+2 {x} {c} {o} {s}\alpha+1}$$
    Solution

    $$\int_{0}^{1}\dfrac{dx}{x^2+x  cos_\alpha+1}$$
    $$\int_{0}^{1}\dfrac{dx}{(x+cos  \alpha)^2}+ sin^2    \alpha$$
    $$\left ( \dfrac{1}{sin  \alpha} \left [ tan^{-1} \left ( \dfrac{x+ cos  \alpha}{sin  \alpha} \right ) \right ]+c \right )_{0}^{1}$$
    $$=\dfrac{1}{sin  \alpha} \left [ tan^{-1} \left ( \dfrac{1+cos  \alpha}{sin  \alpha} \right )  \right ]-\dfrac{1}{sin  \alpha}tan^{-1}\left ( \dfrac{cos  \alpha}{sin  \alpha} \right )$$
    $$=\dfrac{1}{sin  \alpha}\left [ tan^{-1} (cot  \dfrac{\alpha}{2})-tan^{-1}(cot  \alpha) \right ]$$
    $$=\dfrac{1}{sin \alpha} \left ( \alpha -\dfrac{\alpha}{2} \right ) =\dfrac{\alpha}{2} sin  \alpha$$

  • Question 10
    1 / -0

    $$\displaystyle \int_{0}^{\pi/2}\frac{1}{1+4\sin^{2}x}dx=$$
    Solution

    $$\int_{0}^{\dfrac{\pi}{4}} \dfrac{1}{1+4  sin^2  x}dx =\int_{0}^{\dfrac{\pi}{4}} \dfrac{1}{1+4  cos^2  x}dx$$
    $$\int_{0}^{\dfrac{\pi}{4}} \dfrac{1}{1+4  cos^2x}dx =\int_{0}^{\dfrac{\pi}{4}} \dfrac{sec^2x}{(sec^2x + 4)}dx$$
    $$=\int_{0}^{\dfrac{\pi}{4}} \dfrac{d(tan   x)}{5 + tan^2  x} dx= \left [ \dfrac{1}{\sqrt{5}} tan^{-1}\left ( \dfrac{tan  x}{\sqrt{5}} \right ) + c \right ]_{0}^{\dfrac{\pi}{2}}$$
    $$=\dfrac{1}{\sqrt{5}}(\dfrac{\pi}{2})$$
    $$=\dfrac{\pi}{2\sqrt{5}}$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now