Self Studies

Integrals Test - 22

Result Self Studies

Integrals Test - 22
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    $$\displaystyle \int_{0}^{16}\frac{dx}{\sqrt{x+9}-\sqrt{x}}=$$
    Solution

    $$\int_{0}^{16}\dfrac{dx}{\sqrt{x+9}-\sqrt{x}}$$
    $$\int_{0}^{16}\dfrac{\sqrt{x}+9+\sqrt{x}}{9}dx$$
    $$=\dfrac{1}{19}\left [ \int_{0}^{16} \sqrt{x+9}dx + \int_{0}^{16}\sqrt{x}dx \right ]$$
    $$=\dfrac{1}{19}\times \dfrac{2}{3}\left [ (x+a)^{\dfrac{3}{2}}\int_{0}^{16}+ x^{\dfrac{3}{2}} \int_{0}^{16} \right ]$$
    $$=\dfrac{2}{27}\left [ (25)^{\dfrac{3}{2}} - (9)^{\dfrac{3}{2}}+ (16)^{\dfrac{3}{2}} \right ]$$
    $$=\dfrac{2}{27}\left [ 125-27+64 \right ]$$
    $$=\dfrac{2}{27}\left [ 189-27 \right ] =\dfrac{2}{27}\left [ 162 \right ]$$
    $$=12$$

  • Question 2
    1 / -0

    $$\displaystyle \int_{0}^{1}\frac{\sqrt{x}}{1+x}dx_{=}$$
    Solution
    Let $$I=\int { \cfrac { \sqrt { x }  }{ 1+x } dx } $$
    Substitute $$t=\sqrt { x } \Rightarrow dt=\cfrac { 1 }{ 2\sqrt { x }  } ds$$
    $$I=2\int { \cfrac { { t }^{ 2 } }{ { t }^{ 2 }+1 } dt } =2\int { \left( 1-\cfrac { 1 }{ { t }^{ 2 }+1 }  \right) dt } =2\int { dt } -2\int { \cfrac { 1 }{ { t }^{ 2 }+1 } dt } \\ =2t-2{ tan }^{ -1 }t=2\sqrt { x } -2{ tan }^{ -1 }\sqrt { x } $$
    Therefore
    $$\int _{ 0 }^{ 1 }{ Idx } ={ \left[ 2\sqrt { x } -2{ tan }^{ -1 }\sqrt { x }  \right]  }_{ 0 }^{ 1 }=2-\cfrac { \pi  }{ 2 } $$
  • Question 3
    1 / -0

    $$\displaystyle \int_{0}^{\pi/4}\frac{\sqrt{\tan x}}{sin x cos x}dx=$$
    Solution

    $$\int_{0}^{\dfrac{\pi}{4}}\dfrac{sec^2  x \sqrt{tan  x}}{tan  x}dx$$
    dividing  and multiplying by $$sec^2 x$$
    $$=\int_{0}^{\dfrac{\pi}{4}}\dfrac{d  tan  x}{\sqrt{tan  x}}$$
    $$=(2\sqrt{tanx}+c)\int_{0}^{\dfrac{\pi}{4}}$$
    $$=2$$

  • Question 4
    1 / -0

    $$\displaystyle \int_{1}^{2}\frac{dx}{x^{2}-2x+4}=$$
    Solution

    $$\int_{1}^{2}\dfrac{dx}{(x-1)^2+(\sqrt{3})^2}=\left [ \dfrac{1}{\sqrt{3}} tan^{-1} \left ( \dfrac{x-1}{\sqrt{3}}\right ) +c \right ] \int_{1}^{2}$$
    $$=\dfrac{1}{\sqrt{3}}tan^{-1}\left ( \dfrac{1}{\sqrt{3}} \right )$$
    $$=\dfrac{1}{\sqrt{3}}\cdot \dfrac{\pi}{6}$$
    $$=\dfrac{\pi}{6\sqrt{3}}$$

  • Question 5
    1 / -0

    $$\displaystyle \int_{0}^{1}\frac{x}{1+\sqrt{x}}dx_{=}$$
    Solution

    $$x=t^2$$
    $$dx=2t   dt$$
    $$=\int_{0}^{1}\left ( \dfrac{t^2}{1+t} \right )  2t \cdot  dt$$
    $$=2\int_{0}^{1}\dfrac{t^3}{1+t}dt =2\int_{0}^{1}\dfrac{t^3+1}{t+1}dt -2\int_{0}^{1}\dfrac{1}{t+1}dt$$
    $$=2\left [ \dfrac{t^3}{3}\dfrac{t^2}{2}+t \right] \int_{0}^{1} -2 log (1+1) \int_{0}^{1}$$
    $$=2\left [ \dfrac{1}{3} -\dfrac{1}{2} +1 \right ] -2 log (2)$$
    $$=2 \left [ \dfrac{2-3+6}{6} \right ] -2  log (2)$$
    $$=\dfrac{5}{3}-log  4$$

  • Question 6
    1 / -0

    $$\displaystyle \int_{0}^{\pi}\frac{dx}{3+2\sin x+\cos x}=$$
    Solution

    $$\int_{0}^{\pi}\dfrac{dx}{3+2  sin  x+  cos  x}$$
    $$=\int_{0}^{\pi}\dfrac{dx(1+tan^2 \dfrac{x}{2})}{3(1+tan^2 \dfrac{x}{2}) + 2 (2 tan \dfrac{x}{2}) + (1- tan^2 \dfrac{x}{2})}$$
    $$=\int_{0}^{\pi}\dfrac{sec^2\dfrac{x}{2} dx}{2 tan^2 \dfrac{x}{2}+ 4 tan \dfrac{x}{2}+4}$$
    $$=\int_{0}^{\pi}\dfrac{2 d (tan^2 \dfrac{x}{2})}{(\sqrt{2}tan \dfrac{x}{2}+\sqrt{2})^2+(\sqrt{2})^2}$$
    $$=\int_{0}^{\pi}\dfrac{d (tan^2 \dfrac{x}{2})}{(\sqrt{2}tan \dfrac{x}{2}+\sqrt{2})^2+(\sqrt{2})^2}$$
    $$=\int_{0}^{\pi}\dfrac{d(tan^2 \dfrac{x}{2})}{(tan \dfrac{x}{2}+1)^2} =tna^{-1}(tan \dfrac{x}{2}+1)\int_{0}^{\pi}$$
    $$=\dfrac{\pi}{2} -\dfrac{\pi}{4}$$
    $$=\dfrac{\pi}{4}$$

  • Question 7
    1 / -0
    Evaluate the following definite integral:
    $$\displaystyle \int_{0}^{1}$$ $$\sin \left(2 {t} {a} {n}^{-1}\sqrt{\dfrac{1- {x}}{1+ {x}}}\right) {d} {x}$$
    Solution

    Consider, $$I=\displaystyle \int_{0}^{1}\sin \left (2 tan^{-1}\sqrt{\dfrac{1-x}{1+x}} \right ) dx$$

    let, $$x=  \cos \theta$$ $$\Rightarrow$$ $$dx=-\sin \theta  d \theta$$

    $$\Rightarrow$$ $$x\rightarrow 0 \Rightarrow  \cos \theta \rightarrow \dfrac{\pi}{2}$$ and $$x\rightarrow 1 \Rightarrow  \cos \theta \rightarrow 0$$

    $$\Rightarrow$$ $$I=\displaystyle \int_{\frac{\pi}{2}}^{0} \sin ( 2 tan^{-1}(tan(\dfrac{\theta}{2})) (-\sin \theta)  d\theta$$

    $$\Rightarrow$$ $$I=\displaystyle \int_{0}^{\frac{\pi}{2}} \sin^2 \theta  d \theta = \displaystyle \int_{0}^{\frac{\pi}{2}}\left [ \dfrac{1-\cos 2 \theta }{2} \right ] d\theta$$

    $$\Rightarrow$$ $$I=\displaystyle \int_{0}^{\frac{\pi}{2}}\dfrac{1}{2}d  \theta - \dfrac{1}{2}\displaystyle \int_{0}^{\frac{\pi}{2}}\cos 2 \theta d \theta$$

    $$\Rightarrow$$ $$I=\left[\left ( \dfrac{\pi}{4}-0 \right )+\dfrac{1}{2}  \sin 2 \theta \right]_{0}^{\frac{\pi}{2}}$$

    $$\Rightarrow$$ $$I=\dfrac{\pi}{4}$$

  • Question 8
    1 / -0
    The value of $$\displaystyle \int_{0}^{\pi /4}\displaystyle \frac{\sin^{ \frac{1}{2}}x}{\cos^{ \frac{5}{2}}x} dx$$ is
    Solution
    $$\displaystyle\int_{0}^{\pi/4} \dfrac{\sin^{\frac{1}{2}}x}{\cos^{\frac{5}{2}}x} dx$$

    $$=\displaystyle\int_{0}^{\pi/4} \dfrac{\tan^{\frac{1}{2}}x}{\cos^2{x}}dx$$

    $$=\displaystyle\int_{0}^{\pi/4} \sec^2{x} \tan^{\frac{1}{2}}dx$$

    Now, let $$ z=\tan{x}$$     $$\implies dz=\sec^2{x}dx$$

    And at $$ x=0, z=0 $$ and at $$ x=\dfrac{\pi}{4}, z=1$$

    Now, integration becomes $$\displaystyle\int_{0}^{1} \sqrt{z} dz$$

    $$=\dfrac{2}{3} \left[z^{\frac{3}{2}} \right]_{0}^{1}$$

    $$=\cfrac 23$$
  • Question 9
    1 / -0

    $$\displaystyle \int_{0}^{\pi/2}(2\tan\frac{x}{2}+x\sec^{2}\frac{x}{2})dx=$$
    Solution

    $$\int_{0}^{\dfrac{\pi}{2}}\left ( 2  tan \dfrac{x}{2} + x  sec^2  \dfrac{x}{2} \right )  dx$$
    $$=2 \int_{0}^{\dfrac{\pi}{2}}\left ( tan \dfrac{x}{2} + \dfrac{1}{2} x sec^2  \dfrac{x}{2} \right )  dx$$
    $$=2 \int_{0}^{\dfrac{\pi}{2}}d\left ( x  tan \dfrac{x}{2} \right )$$
    $$=2  \left ( x  tan \dfrac{x}{2} \right ) \int_{0}^{\dfrac{\pi}{2}}$$
    $$=2 \left [ \left ( \dfrac{\pi}{2} 1 \right ) - 0 \right ]$$
    $$=\pi$$

  • Question 10
    1 / -0
    $$\int_{2}^{3}\dfrac{2-x}{\sqrt{5x-6-x^{2}}} dx =$$
    Solution
    Let $$I=\int { \cfrac { 2-x }{ \sqrt { 5x-6-{ x }^{ 2 } }  } dx } =\int { \cfrac { 2-x }{ \sqrt { \cfrac { 1 }{ 4 } -\left( x-\cfrac { 5 }{ 2 }  \right) ^{ 2 } }  } dx } $$
    Substitute $$t=x-\cfrac { 5 }{ 2 } \Rightarrow dt=dx$$
    $$I=\int { \cfrac { -t-\cfrac { 1 }{ 2 }  }{ \sqrt { \cfrac { 1 }{ 4 } -{ t }^{ 2 } }  } dt } $$
    Substitute $$t=\cfrac { sinu }{ 2 } \Rightarrow dt=\cfrac { cosu }{ 2 }du $$
    $$I=\int { \left( -\cfrac { sinu }{ 2 } -\cfrac { 1 }{ 2 }  \right) du } =\cfrac { cosu }{ 2 } -\cfrac { u }{ 2 } =\cfrac { cos\left( { sin }^{ -1 }2t \right)  }{ 2 } -\cfrac { { sin }^{ -1 }2t }{ 2 } \\ =\cfrac { cos\left( { sin }^{ -1 }2\left( x-\cfrac { 5 }{ 2 }  \right)  \right)  }{ 2 } -\cfrac { { sin }^{ -1 }2\left( x-\cfrac { 5 }{ 2 }  \right)  }{ 2 } =\cfrac { cos\left( { sin }^{ -1 }\left( 2x-5 \right)  \right)  }{ 2 } -\cfrac { { sin }^{ -1 }\left( 2x-5 \right)  }{ 2 } $$
    Therefore
    $$\int _{ 2 }^{ 3 }{ Idx= } { \left[ \cfrac { cos\left( { sin }^{ -1 }\left( 2x-5 \right)  \right)  }{ 2 } -\cfrac { { sin }^{ -1 }\left( 2x-5 \right)  }{ 2 }  \right]  }_{ 2 }^{ 3 }=0-\cfrac { \pi  }{ 4 } -0-\cfrac { \pi  }{ 4 } =-\cfrac { \pi  }{ 2 } $$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now