Self Studies

Integrals Test - 23

Result Self Studies

Integrals Test - 23
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Evaluate the following definite integral:
    $$\displaystyle \int^{\pi /4}_{-\pi /4}\log(\cos x+\sin x)dx$$
    Solution

    Consider, $$\displaystyle I=\int_{-\pi/4}^{\pi /4}log (cos  x +  sin  x)dx$$

    $$I=\displaystyle \int_{-\dfrac{\pi}{4}}^{\dfrac{\pi}{4}}log \left [ \sqrt{2} sin \left ( \dfrac{\pi}{4}+ x \right ) \right ]  dx$$                

    let, $$\dfrac{\pi}{4}+x=t$$ $$\Rightarrow$$ $$dx=dt$$

    So, $$x \rightarrow \dfrac{-\pi}{4} \Rightarrow t \rightarrow 0$$ and $$x \rightarrow \dfrac{\pi}{4} \Rightarrow t \rightarrow \dfrac{\pi}{2}$$


    $$\Rightarrow$$ $$\displaystyle I=\int_{0}^{\dfrac{\pi}{2}} \log (\sqrt{2} \sin  t)dt$$

    $$\Rightarrow$$ $$\displaystyle I=\int_{0}^{\dfrac{\pi}{2}} \log (\sqrt{2}) + \int_{0}^{\dfrac{\pi}{2}} \log (\sin  t)dt$$

    $$\Rightarrow$$ $$\displaystyle I=\dfrac{\pi}{2}\log (\sqrt{2})-\dfrac{\pi}{2} \log (2)$$

    $$\Rightarrow$$ $$\displaystyle I=\dfrac{\pi}{4}\log  2 -\dfrac{\pi}{2} \log (2)$$

    $$\Rightarrow$$ $$\displaystyle I=-\dfrac{\pi}{4} \log  2$$

  • Question 2
    1 / -0
    Evaluate the integral
    $$\displaystyle \int_{0}^{a}\sqrt{\frac{a+x}{a-x}}dx$$
    Solution

    $$\displaystyle \int_{0}^{a}\sqrt{\dfrac{a+x}{a-x}}dx$$

    $$x=a  cos  \theta =dx -a  sin  \theta  d  \theta$$

    $$=\displaystyle \int_{\dfrac{\pi}{2}}^{a}\sqrt{\dfrac{a+ a  cos  \theta}{a-  a  cos  \theta}}(-a  sin  \theta)d  \theta$$

    $$=a\displaystyle \int_{0}^{\dfrac{\pi}{2}} \sqrt{\dfrac{1+ cos  \theta}{1- cos  \theta}}sin  \theta  d  \theta$$

    $$=a\displaystyle \int_{0}^{\dfrac{\pi}{2}}\dfrac{cos \dfrac{\theta}{2}}{sin \dfrac{\theta}{2}}\cdot  2 sin \dfrac{\theta}{2} d\theta$$

    $$=a\displaystyle \int_{0}^{\dfrac{\pi}{2}}2  cos^2 \dfrac{\theta}{2} d \theta = a \displaystyle \int_{0}^{\dfrac{\pi}{2}}(cos \theta -1) d \theta$$

    $$=a \left ( sin \theta\right )_{0}^{\frac{\pi}{2}} - (\theta)_{0}^{\frac{\pi}{2}}$$

    $$=a[1-0]-\left (\dfrac{\pi}{2} \right)$$

    $$=a\left (\dfrac{\pi}{2}+1 \right )$$

    $$=\dfrac{a}{2}(\pi+2)$$

  • Question 3
    1 / -0

    $$\displaystyle \int_{0}^{1}\sqrt{\frac{\mathrm{x}}{1-\mathrm{x}^{3}}}\mathrm{d}\mathrm{x}=$$
    Solution
    Let $$I=\int { \sqrt { \cfrac { x }{ 1-{ x }^{ 3 } }  } dx } $$
    Substitute $$t={ x }^{ 3/2  }\Rightarrow dt=\cfrac { 3\sqrt { x }  }{ 2 } dx$$
    We get
    $$I=\cfrac { 2 }{ 3 } \int { \cfrac { 1 }{ \sqrt { 1-{ t }^{ 2 } }  } dt } =\cfrac { 2 }{ 3 } { sin }^{ -1 }t=\cfrac { 2 }{ 3 } { sin }^{ -1 }{ x }^{ 3/2 }$$
    Therefore
    $$\int _{ 0 }^{ 1 }{ Idx } =\int _{ 0 }^{ 1 }{ \cfrac { 2 }{ 3 } { sin }^{ -1 }{ x }^{ 3/2 } } =\cfrac { 2 }{ 3 } \left( \cfrac { \pi  }{ 2 } -0 \right) =\cfrac { \pi  }{ 3 } $$
  • Question 4
    1 / -0

    $$\displaystyle \int_{0}^{3}x\sqrt{1+x}dx=$$
    Solution
    Initially, we perform indefinite integration,
    Let 1 + x = t
    dx = dt
    Putting the values back,
    $$ \int (t-1){t}^{0.5} dt $$
    = $$ \int {t}^{1.5} - {t}^{0.5} dt $$
    = $$ \frac{2}{5} {t}^{2.5} - \frac{2}{3}{t}^{1.5} $$
    Putting the value of t back,
    $$ \frac{2}{5} {(1+x)}^{2.5} - \frac{2}{3}{(1+x)}^{1.5} $$
    Now applying the limits to the expression,
    $$ (\frac{2}{5} {(1+3)}^{2.5} - \frac{2}{3}{(1+3)}^{1.5}) - (\frac{2}{5} {(1+0)}^{2.5} - \frac{2}{3}{(1+0)}^{1.5}) $$ 
    = $$ \displaystyle \frac{64}{5} - \displaystyle \frac{16}{3} - \displaystyle \frac{2}{5} + \displaystyle \frac{2}{3} $$
    $$ \displaystyle \frac{62}{5} - \displaystyle \frac{14}{3} $$
    = $$ \displaystyle \frac{116}{15} $$
  • Question 5
    1 / -0

    $$\displaystyle \int_{\pi^{2}/16}^{\pi^{2}/4}\frac{\sin\sqrt{x}}{\sqrt{x}}dx=$$
    Solution
    Let $$ {x}^{0.5} = t $$
    $$ \dfrac{1}{2{x}^{0.5}} dx = dt $$
    Putting the values back in the given expression,
    $$ \int 2 sin t dt $$
    Integrating the expression, indefinitely
    = $$ -2 cos t + c $$
    Putting back the value of t = $$ {x}^{0.5} $$
    = $$ - 2cos({x}^{0.5}) + c $$
    Applying the limits,
    $$ (2 cos (\dfrac{\pi}{4})) - (2 cos (\dfrac{\pi}{2})) $$
    = $$ {2}^{0.5} $$
  • Question 6
    1 / -0

    $$\displaystyle \int_{0}^{1}\frac{dx}{x+\sqrt{x}}=$$
    Solution

    $$\int_{0}^{1} \dfrac{dx}{(x+\sqrt{x})}$$
    $$x=t^2$$
    $$\int_{0}^{1}\dfrac{2t  dt}{t^2+ t}=2\int_{0}^{1}\dfrac{dt}{t+1}=2 log (t+1)\int_{0}^{1}$$
    $$=2  log (2)-2log (1)$$
    $$=2  log  2$$

  • Question 7
    1 / -0

    lf $$\displaystyle \int_{0}^{k}\frac{dx}{2+8x^{2}}=\frac{\pi}{16}$$ then $$\mathrm{k}=$$
    Solution

    $$\int_{0}^{k}\dfrac{dx}{2+ 8x^2}=\dfrac{\pi}{16}$$
    $$\dfrac{1}{2}\int_{0}^{k}\dfrac{dx}{1+(2x)^2}=\dfrac{\pi}{16}$$
    $$\dfrac{1}{2}(\dfrac{1}{2})tan^{-1}(2x)\int_{0}^{k}=\dfrac{\pi}{16}$$
    $$\dfrac{1}{4}tan^{-1}(2k)=\dfrac{\pi}{16}$$
    $$tan^{-1}(2k)=\dfrac{\pi}{4}$$
    $$2k=1$$
    $$k=\dfrac{1}{2}$$

  • Question 8
    1 / -0
    If $$ \displaystyle    {I}_{ {n}}=\int^{\pi/2 }_{\pi/4}( {T} {a} {n}\theta)^{- {n}}. {d}\theta $$ for $$( {n}>1)$$ 
    then $$I_{n}+I_{n+2} = ?$$
    Solution

    $$I_{n}=\displaystyle \int_{^{\pi}/_{4}}^{^{\pi}/_{2}}(cot\ \theta)^{n}$$

    $$I_{n}+I_{n+2}=\displaystyle \int_{^{\pi}/_{4}}^{^{\pi}/_{2}}[(cot\ \theta)^{n}+(cot\ \theta)^{n+2}]d\ \theta$$

    $$=\displaystyle \int_{^{\pi}/_{4}}^{^{\pi}/_{2}}(cot\ \theta)^{n}cosec^{2}d\ \theta$$

    $$=\displaystyle \int_{^{-\pi}/_{4}}^{^{\pi}/_{2}}(cot\ \theta)^{n}d(cot\ \theta)$$

    $$-\dfrac{(cot\ \theta)^{n+1}}{n+1}|_{^{-\pi}/_{4}}^{^{\pi}/_{2}}$$

    $$-\left [ 0-\dfrac{1}{n+1} \right ]$$

    $$=\dfrac{1}{n+1}$$

  • Question 9
    1 / -0
    Evaluate: $$\displaystyle \int_{0}^{\pi /4}\tan^{5}xdx$$
    Solution
    $$\tan^5{x}=\tan^3{x}(\sec^2{x}-1)=\tan^3{x}\sec^2{x}-\tan^3{x}$$

    $$=\tan^3{x}\sec^2{x}-\tan{x}(\sec^2{x}-1)$$

    $$\implies \tan^5{x}=\tan^3{x}\sec^2{x}-\tan{x}\sec^2{x}+\tan{x}$$

    Hence, integration becomes:-

    $$\displaystyle\int_{0}^{\pi/4}\tan^3{x}\sec^2{x}dx-\int_{0}^{\pi/4}\tan{x}\sec^2{x}dx+\int_{0}^{\pi/4}\tan{x}dx$$

    Now, let $$z=\tan{x}\implies dz=\sec^2{x}dx$$

    And when, $$x=0,z=0$$ and when $$x=\dfrac{\pi}{4}, z=1$$

    $$\implies\displaystyle\int_{0}^{1}z^3dz-\int_{0}^{1}zdz+\int_{0}^{\pi/4}\tan{x}dx$$

    $$=\dfrac{1}{4}\left[z^4\right]_{0}^{1}-\dfrac{1}{2}\left[z^2\right]_{0}^{1}+\left[\log{|\sec{x}|}\right]_{0}^{\pi/4}$$

    $$=\dfrac{1}{4}-\dfrac{1}{2}+\log{\sqrt{2}}-\log{1}$$

    $$=\dfrac{1}{2}\log{2}-\dfrac{1}{4}$$
  • Question 10
    1 / -0
    If $$\displaystyle \mathrm{U}_{\mathrm{n}}=\int^{\pi /4}_{0} \mathrm{t}\mathrm{a}\mathrm{n}^{\mathrm{n}}\theta \mathrm{d}\theta$$, then $$\mathrm{u}_{10}+\mathrm{u}_{12}$$ is equal to:
    Solution
    $$U_n=\displaystyle\int_{0}^{\pi/4} \tan^n {\theta}d\theta$$

    $$U_{10}+U_{12}=\displaystyle\int_{0}^{\pi/4} \tan^{10} {\theta} d\theta+ \int_{0}^{\pi/4} \tan^{12} {\theta}d\theta$$

    $$=\displaystyle\int_{0}^{\pi/4} \tan^{10}{\theta} (1+\tan^2{\theta})d\theta$$

    $$=\displaystyle\int_{0}^{\pi/4} \tan^{10}{\theta} \sec^2\theta d\theta$$

    Let, $$z=\tan\theta$$        $$\implies dz=\sec^2\theta d\theta$$

    And when $$ \theta=0,z=0$$ and when $$\theta=\dfrac{\pi}{4},z=1$$

    Now, integration becomes:-

    $$\displaystyle\int_{0}^{1} z^{10}dz=\dfrac{1}{11} \left[z^{11}\right]_{0}^{1}$$

    $$=\dfrac{1}{11}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now