Self Studies

Integrals Test - 33

Result Self Studies

Integrals Test - 33
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\displaystyle \int_{\log 2}^{x}\frac{1}{\sqrt{e^x-1}}dx=\frac{\pi }{6}$$, then the value of $$x$$ is 
    Solution
    Let $$I=\displaystyle \int_{\log 2}^{x}\frac{1}{\sqrt{e^x-1}}dx$$
    Put $$e^x-1=t^2$$ $$\Rightarrow e^xdx=2t\, dt \Rightarrow (t^{2}+1)dx=2t\ dt \Rightarrow dx=\dfrac{2t}{1+t^{2}} dt$$
    When $$x=\log 2, t=\pm 1$$ 

    $$\therefore I=\displaystyle \int_{1}^{\sqrt{e^{x}-1}}\frac{2t}{t(1+t^2)}dt$$

    $$=2 \displaystyle \int_{1}^{\sqrt{e^{x}-1}}\frac{1}{1+t^2}dt$$

    $$=2|\tan^{-1} t|_{1}^{\sqrt{e^{x}-1}}$$

    $$=2[\tan^{-1}\sqrt{e^x-1}-\tan^{-1}1]$$ 

    $$=2 \tan^{-1}\sqrt{e^x-1}-\dfrac{\pi}{2}$$
    But $$I=\displaystyle \int_{\log 2}^{x}\frac{1}{\sqrt{e^x-1}}dx=\frac{\pi}{6}$$

    $$\Rightarrow 2 \tan^{-1}\sqrt{e^x-1}-\dfrac{\pi}{2}=\dfrac{\pi}{6}$$
    $$\Rightarrow 2 \tan^{-1}\sqrt{e^x-1}=\dfrac{2\pi}{3}$$
    $$\Rightarrow \sqrt{e^x-1}=\tan \left(\frac{\pi}{3}\right)=\sqrt{3}$$
    $$\Rightarrow e^x-1=3$$
    $$\Rightarrow e^x=4$$
    $$\therefore x=\log 4$$
  • Question 2
    1 / -0
    $$\displaystyle\int { \cfrac { 1 }{ 7 } \sin { \left( \cfrac { x }{ 7 } +10 \right)  } dx } $$ is equal to
    Solution
    Let $$I=\int { \cfrac { 1 }{ 7 } \sin { \left( \cfrac { x }{ 7 } +10 \right)  } dx } $$
    $$=\cfrac { 1 }{ 7 } \int { \sin { \left( \cfrac { x }{ 7 } +10 \right)  }  } =\cfrac { 1 }{ 7 } \cfrac { -\cos { \left( \cfrac { x }{ 7 } +10 \right)  }  }{ \cfrac { 1 }{ 7 }  } $$
    $$=-\cos { \left( \cfrac { x }{ 7 } +10 \right)  } +C$$
  • Question 3
    1 / -0
    If $$\displaystyle\int { \sqrt { 1+\sin { x }  } \cdot f\left( x \right) dx } =\dfrac { 2 }{ 3 } { \left( 1+\sin { x }  \right)  }^{ { 3 }/{ 2 } }+C$$, then $$f\left( x \right) $$ is equal to
    Solution
    $$\int { \sqrt { 1+\sin { x }  }  } .f\left( x \right) dx=\dfrac { 2 }{ 3 } { (1+\sin { x } ) }^{ { 3 }/{ 2 } }+c$$
    On differentiating both sides, we get
    $$\sqrt { 1+\sin { x }  } .f\left( x \right) =\dfrac { 2 }{ 3 } .\dfrac { 3 }{ 2 } { (1+\sin { x } ) }^{ { 1 }/{ 2 } }.\cos { x } +0\\ \Rightarrow f\left( x \right) =\cos { x } $$
  • Question 4
    1 / -0
    $$\displaystyle\int { { x }^{ x }\log { \left( ex \right)  } dx } $$ is equal to
    Solution
    Let $$I=\displaystyle\int { { x }^{ x }\left( \log { ex }  \right) dx } $$
    $$=\displaystyle\int { { x }^{ x }\left( 1+\log { x }  \right) dx } $$
    Let $$t={ x }^{ x }={ e }^{ x\log { x }  }$$
    $$\Rightarrow \dfrac { dt }{ dx } ={ x }^{ x }\left\{ x\cdot \dfrac { 1 }{ x } +\log { x }  \right\} $$
    $$\Rightarrow dt={ x }^{ x }\left( 1+\log { x }  \right) dx$$
    Therefore, $$ I=\displaystyle\int { t+c } ={ x }^{ x }+c$$
  • Question 5
    1 / -0
    $$\displaystyle \int _{ 0 }^{ \pi/2}{ \frac{1}{a + b \cos x}} dx, a > |b| =$$.
    Solution
    $$\displaystyle \int _{ 0 }^{ \pi /2 }{ \dfrac { dx }{ a+b\cos { x }  }  } =\int _{ 0 }^{ \pi /2 }{ \dfrac { dx }{ a+b\left(\dfrac { 1-\tan ^{ 2 }{ \dfrac { x }{ 2 }  }  }{ 1+\tan ^{ 2 }{ \dfrac { x }{ 2 }  }  } \right) }  } =\int _{ 0 }^{ \pi /2 }{ \dfrac { (1+\tan ^{ 2 }{ \dfrac { x }{ 2 }  } )dx }{ (a+b)+(a-b)\tan ^{ 2 }{ \dfrac { x }{ 2 }  }  }  } =\int _{ 0 }^{ \pi /2 }{ \dfrac { \sec ^{ 2 }{ \dfrac { x }{ 2 }  } dx }{ (a+b)+(a-b)\tan ^{ 2 }{ \dfrac { x }{ 2 }  }  }  } $$

    Let $$\tan { \dfrac { x }{ 2 }  } =t$$

    i.e. $$dt=\dfrac { 1 }{ 2 } \sec ^{ 2 }{ \dfrac { x }{ 2 }} dx$$

    So, by substituting the above equation and changing the limits,

    $$\displaystyle \int _{ 0 }^{ 1 }{ \dfrac { 2dt }{ (a+b)+(a-b){ t }^{ 2 } }  } =\left[\dfrac { 2 }{ \sqrt { (a+b)(a-b) }  } \tan ^{ -1 }{ \sqrt { \dfrac { a-b }{ a+b }  } t } \right] _{ 0 }^{ 1 }=\dfrac { 2 }{ \sqrt { { a }^{ 2 }-{ b }^{ 2 } }  } \tan ^{ -1 }{ \sqrt { \dfrac { a-b }{ a+b }  }  } $$
  • Question 6
    1 / -0
    $$\displaystyle\int _{ 0 }^{ { \sqrt { \pi  }  }/{ 2 } }{ 2{ x }^{ 3 }\sin { \left( { x }^{ 2 } \right)  } dx } $$ is equal to
    Solution
    $$I=\displaystyle\int _{ 0 }^{ { \sqrt { \pi  }  }/{ 2 } }{ 2{ x }^{ 3 }\sin { \left( { x }^{ 2 } \right)  } dx } $$
       $$=\displaystyle\int _{ 0 }^{ { \sqrt { \pi  }  }/{ 2 } }{ 2{ x }^{ 2 }\cdot x\sin { \left( { x }^{ 2 } \right)  } dx } $$
    Put $${ x }^{ 2 }=t$$
    $$\Rightarrow 2xdx=dt$$
    Also, when $$x=0$$, then $$t=0$$
    and when $$x=\dfrac { \sqrt { \pi  }  }{ 2 } $$, then $$t=\dfrac { \pi  }{ 4 }$$
    $$\Rightarrow I=\displaystyle\int _{ 0 }^{ { \pi  }/{ 4 } }{ \underset { I }{ t } \underset { II }{ \sin { t }  } dt } $$
         $$={ \left[ t\left( -\cos { t }  \right)  \right]  }_{ 0 }^{ { \pi  }/{ 4 } }-\displaystyle\int _{ 0 }^{ { \pi  }/{ 4 } }{ -\cos { t } \left( 1 \right) dt } $$
         $$={ \left[ -t\cos { t }  \right]  }_{ 0 }^{ { \pi  }/{ 4 } }+\displaystyle\int _{ 0 }^{ { \pi  }/{ 4 } }{ \cos { t } dt } $$
         $$={ \left[ -t\cos { t } +\sin { t }  \right]  }_{ 0 }^{ { \pi  }/{ 4 } }$$
         $$=\left[ -\dfrac { \pi  }{ 4 } \cdot \dfrac { 1 }{ \sqrt { 2 }  } +\dfrac { 1 }{ \sqrt { 2 }  }  \right] $$
         $$=\dfrac { 1 }{ \sqrt { 2 }  } \left( 1-\dfrac { \pi  }{ 4 }  \right) $$
  • Question 7
    1 / -0
    If $$ \int _0^1 xdx = \dfrac {\pi}{4} - \dfrac {1}{2} ln 2 $$ then the value of definite integral $$ \int _0^1 \tan^{-1} (1-x+x^2) dx $$ equals :
  • Question 8
    1 / -0
    $$\displaystyle \int_{0}^{\infty} \dfrac {x \ln x}{(1 + x^{2})^{2}}dx =$$
    Solution
    $$1+{ x }^{ 2 }=t$$
    $$2xdx=dt$$
    $$xdx=\cfrac { dt }{ 2 } $$
    $$x=0,t=1$$
    $$x=\infty ,t=\infty $$
    $$x=\sqrt { t-1 } $$
    $$\ln { x } =\cfrac { 1 }{ 2 } \ln { \left( t-1 \right)  } $$
    $$\Rightarrow \int _{ 1 }^{ \infty  }{ \cfrac { 1 }{ 2 } \cfrac { \ln { \left( t-1 \right)  }  }{ { t }^{ 2 } }  } \cfrac { dt }{ 2 } $$
    $$=\cfrac { 1 }{ 4 } \int _{ 1 }^{ \infty  }{ \cfrac { 1 }{ { t }^{ 2 } } \ln { \left( t-1 \right)  }  } dt$$
    Integrating by parts
    $$=\cfrac { 1 }{ 4 } { \left[ -\cfrac { 1 }{ t } \ln { \left( t-1 \right)  }  \right]  }_{ 1 }^{ \infty  }-\cfrac { 1 }{ 4 } \int _{ 1 }^{ \infty  }{ -\cfrac { 1 }{ t\left( t-1 \right)  }  } dt$$
    $$=\cfrac { 1 }{ 4 } { \left[ -\cfrac { 1 }{ \left( 1+{ x }^{ 2 } \right)  } \ln { \left( { x }^{ 2 } \right)  }  \right]  }_{ 0 }^{ \infty  }+\cfrac { 1 }{ 4 } \left[ \int _{ 1 }^{ \infty  }{ \cfrac { 1 }{ t-1 }  } dt-\int _{ 1 }^{ \infty  }{ \cfrac { 1 }{ t-1 }  } dt \right] $$
    $$=\cfrac { 1 }{ 4 } \times 0+\cfrac { 1 }{ 4 } \times 0=0$$

  • Question 9
    1 / -0
    Given $$\int_{1}^{2} e^{x^{2}} dx = a$$ the the value of $$\int_{e}^{e^{4}}\sqrt {ln x} dx$$ is
    Solution
    $$\int_{1}^{2} e^{x^{2}} dx = a$$ (given)
    Let $$I = \int_{e}^{e^{4}}\sqrt {\log x} dx$$ Putting $$\log x = t^{2} \ dx = 2te^{t^{2}} dt$$
    $$= \int_{1}^{2} t(2t)e^{t^{2}} dt = \int_{1}^{2} t(2t e^{t^{2}}) dt$$
    $$= [te^{t^{2}}]_{1}^{2} - \int_{1}^{2} e^{t{2}} dt = 2e^{4} - e - a$$
    $$\left \{As \int_{1}^{2} e^{t^{2}} dt = \int_{1}6{2} e^{x^{2}} dx = a\right )$$
    Hence (a) is correct choice.
  • Question 10
    1 / -0
    If $$f\left( x \right) $$ is defined $$\left[ -2,2 \right] $$ by $$f\left( x \right) =4{ x }^{ 2 }-3x+1$$ and $$g\left( x \right) =\dfrac { f\left( -x \right) -f\left( x \right)  }{ { x }^{ 2 }+3 } $$, then $$\displaystyle\int _{ -2 }^{ 2 }{ g\left( x \right) dx } $$ is equal to
    Solution
    Given that
    $$f\left( x \right) =4{ x }^{ 2 }-3x+1,$$ $$g\left( x \right) =\dfrac { f\left( -x \right) -f\left( x \right)  }{ { x }^{ 2 }+3 } $$
    Therefore, $$ g\left( x \right) =\dfrac { \left( 4{ x }^{ 2 }+3x+1 \right) -\left( 4{ x }^{ 2 }-3x+1 \right)  }{ { x }^{ 2 }+3 } $$
    $$=\dfrac { 6x }{ { x }^{ 2 }+3 } $$
    Now, $$g\left( -x \right) =-\dfrac { 6x }{ { x }^{ 2 }+3 } =-g\left( x \right)$$
    Which is an odd function
    Thus $$ \displaystyle\int _{ -2 }^{ 2 }{ g\left( x \right) dx } =0$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now