Self Studies

Integrals Test - 35

Result Self Studies

Integrals Test - 35
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\int \dfrac {2x + 5}{\sqrt {7 - 6x - x^{2}}} dx = A\sqrt {7 - 6x - x^{2}} + B\sin^{-1} \left (\dfrac {x + 3}{4}\right ) + C$$
    (where $$C$$ is a constant of integration), then the ordered pair $$(A, B)$$ is equal to
    Solution
    Note that $$7-6x-x^2 = 16 - (x+3)^2$$ and $$\dfrac{d}{dx} (7-6x-x^2) = -2x-6$$

    So, we have

    $$\int \dfrac{2x+5}{\sqrt{7-6x-x^2}} dx = \int \dfrac{2x+6}{\sqrt{7-6x-x^2}} dx - \int \dfrac{1}{\sqrt{16-(x+3)^2}} dx\\ = -2\sqrt{7-6x-x^2} - \sin^{-1} (\dfrac{x+3}{4}) + C$$

    So, we have $$A = -2, \ B = -1$$. 

    Thus option A is the correct answer.
  • Question 2
    1 / -0
    $$\displaystyle\int\displaystyle\frac{e^{\cot^{-1}x}}{1+x^2}(x^2-x+1)dx$$ 
    Solution
    Consider, $$\displaystyle I=\int \dfrac{e^{cot^{-1}x}}{1+x^2}(x^2-x+1)dx$$

    $$\Rightarrow$$ $$\displaystyle I=\int e^{cot^{-1}x}-\int \dfrac{xe^{cot^{-1}x}}{1+x^2}dx$$

    $$\Rightarrow$$ $$\displaystyle \int e^{cot^{-1}x}=xe^{cot^{-1}x}+\int \dfrac{xe^{cot^{-1}x}}{1+x^2}+C$$

    $$\Rightarrow$$ $$\displaystyle \int e^{cot^{-1}x}-\int \dfrac{xe^{cot^{-1}x}}{1+x^2}dx = xe^{cot^{-1}x}+C$$

    $$\displaystyle \Rightarrow I = xe^{cot^{-1}x}+C$$

    Hence, the answer is option (B).

  • Question 3
    1 / -0
    $$\displaystyle\int \displaystyle\frac{\cos \alpha}{\sin x\cos (x-\alpha)}dx=$$___________ $$+$$c where $$0 < x < \alpha < \pi_{/2}$$ and $$\alpha$$-constant.
    Solution
    $$\int \dfrac{cos\alpha}{sinxcos(x-\alpha)}dx$$

    $$=\int \dfrac{cos(x-(x-\alpha))}{sinxcos(x-\alpha)}dx$$

    $$=\int \dfrac{cosxcos(x-\alpha)+sinxsin(x-\alpha)}{sinxcos(x-\alpha)}dx$$

    $$=\int (cotx+tan(x-\alpha))dx$$

    $$= ln|sinx|-ln|cos(x-\alpha)|$$

    $$= ln|\dfrac{sinx}{cos(x-\alpha)}|$$

    $$= ln|\dfrac{sinx}{cosxcos(\alpha)+sinxsin(\alpha)}|$$

    $$=ln|\dfrac{sec(\alpha)}{cotx+tan(\alpha)}|$$

    $$=ln|(sec(\alpha))-ln(cotx+tan(\alpha))|$$

    $$=-ln|(cotx+tan(\alpha))|+C$$

    Hence, the answer is option (D).


  • Question 4
    1 / -0
    Let $$I=\displaystyle \int _{ \pi /4 }^{ \pi /3 }{ \cfrac { \sin { x }  }{ x }  } dx$$. Then?
    Solution
    $$I=\displaystyle \int^{\tfrac{\pi}{3}}_{\tfrac{\pi}{4}}\dfrac{sinx}{x}dx$$

    $$\dfrac{sinx}{x}$$ is a decreasing function in given interval

    difference of limits $$=\dfrac{\pi}{3}-\dfrac{\pi}{4}=\dfrac{\pi}{12}$$

    so, $$\dfrac{\pi}{12}\cdot\dfrac{sin\dfrac{\pi}{3}}{\dfrac{\pi}{3}} \le I \le \dfrac{\pi}{12}

    \cdot\dfrac{sin\dfrac{\pi}{4}}{\dfrac{\pi}{4}}$$

    $$\dfrac{\sqrt3}{8} \leq I \leq \dfrac{\sqrt2}{6}$$
  • Question 5
    1 / -0
    $$\int _{ 0 }^{ 1 }{ x{ \left[ 1-x \right]  }^{ 11 } } dx=........$$
    Solution
    $$\rightarrow I=\int _{ 0 }^{ 1 }{ x{ (1-x) }^{ 11 } } dx$$
    Take $$1-x$$ is place of $$x$$
    $$=\int _{ 0 }^{ 1 }{ (1-x){ \left[ 1-(1-x) \right]  }^{ 11 }dx } $$
    $$=-\int _{ 0 }^{ 1 }{ \left( 1-x \right) { x }^{ 11 } } dx=-\int _{ 0 }^{ 1 }{ \left( { x }^{ 11 }-{ x }^{ 12 } \right)  } dx=-{ \left[ \cfrac { { x }^{ 12 } }{ 12 } -\cfrac { { x }^{ 13 } }{ 13 }  \right]  }_{ 0 }^{ 1 }=\cfrac { 1 }{ 13 } -\cfrac { 1 }{ 12 } $$
    $$\therefore I=-\cfrac { 1 }{ 156 } $$
  • Question 6
    1 / -0
    $$\displaystyle \int_{0}^{1}{\dfrac{ln(1+x)}{1+{x}^{2}}}dx=$$
    Solution
    $$\displaystyle \int_{0}^{1}{\dfrac{\ln(1+x)}{1+{x}^{2}}}dx=$$
    $$\Rightarrow \dfrac{-i\left(-\ln(1-i))\ln(|x+i|)+\ln(i+1)\ln(|x-i|)+li_2\left(\dfrac{x+i}{x-1}\right)-li_2\left(\dfrac{-x+i}{1+i}\right)\right)+c}{2}$$
    $$\therefore arc\tan(x)\ln(x+1)-arc\tan|(x)\ln\left(\dfrac{x^2+2x+1}{2}\right)-\tan 2\left(\dfrac{x+1}{2},\dfrac{x+1}{2}\right)$$
    $$\dfrac{\ln(x^2+1)-ili_2\left(l\dfrac{i(i+1)x-i+1}{2}\right)+ili_2\left(\dfrac{i(i+1)x-i-1}{2}\right)^{+c}}{2}$$
    $$\dfrac{\therefore -ili_2\left(\dfrac{i+1}{2}\right)-ili_2\left(\dfrac{-i-1}{2}\right)+\dfrac{ili2(-1)}{2}-\dfrac{-i(li2-1)}{2}+\dfrac{\pi \ln(2)}{4}}{2}$$
    $$=\dfrac{\pi \ln(2)}{4}$$
  • Question 7
    1 / -0
    What is $$\displaystyle \int_{0}^{2\pi}\sqrt {1 + \sin \dfrac {x}{2}}dx$$ equal to?
    Solution
    $$1+\sin\frac { x }{ 2 } ={ \sin }^{ 2 }\frac { x }{ 4 } +{ \cos }^{ 2 }\frac { x }{ 4 } +2\sin\frac { x }{ 4 } \cos\frac { x }{ 4 } \\ { (\sin\frac { x }{ 4 } +\cos\frac { x }{ 4 } ) }^{ 2 }\\ \sqrt { 1+\sin\frac { x }{ 2 }  } =\sqrt { { (\sin\frac { x }{ 4 } +\cos\frac { x }{ 4 } ) }^{ 2 } } =\sin\frac { x }{ 4 } +\cos\frac { x }{ 4 } $$
    $$\displaystyle \int _{ 0 }^{ 2\pi  }{ \left(\sin\frac { x }{ 4 } +\cos\frac { x }{ 4 }\right )dx } =4\left(-\cos\frac { x }{ 4 } +\sin\frac { x }{ 4 }\right )+c\\ After\quad putting\quad the\quad limit\quad we\quad get\\\Rightarrow  4(1-(-1))=8\\ $$
    So correct answer will be option A

  • Question 8
    1 / -0
    $$\int _{ 0 }^{ 5 }{ \sqrt { 25-{ x }^{ 2 } }  } dx=.........$$
    Solution
    $$\rightarrow I=\int _{ 0 }^{ 5 }{ \sqrt { 25-{ x }^{ 2 } }  } dx$$
    $$=\int _{ 0 }^{ 5 }{ \sqrt { { (5) }^{ 2 }-{ x }^{ 2 } }  } dx\quad $$
    Now take $$a=5$$ in the $$\int { \sqrt { { a }^{ 2 }-{ x }^{ 2 } }  } dx$$
    $$\therefore I={ \left\{ \cfrac { x\sqrt { { 5 }^{ 2 }-{ x }^{ 2 } }  }{ 2 } +\cfrac { { 5 }^{ 2 } }{ 2 } \sin ^{ -1 }{ \left( \cfrac { x }{ 5 }  \right)  }  \right\}  }_{ 0 }^{ 5 }$$
    $$=\left\{ \cfrac { 5\sqrt { { 5 }^{ 2 }-{ 5 }^{ 2 } }  }{ 2 } +\cfrac { 25 }{ 2 } \sin ^{ -1 }{ \left( \cfrac { 5 }{ 5 }  \right)  }  \right\} -\left\{ \cfrac { 0\sqrt { { 5 }^{ 2 }-0 }  }{ 2 } +\cfrac { 25 }{ 2 } \sin ^{ -1 }{ \left( \cfrac { 0 }{ 5 }  \right)  }  \right\} $$
    $$=0+\cfrac { 25 }{ 2 } \left( \cfrac { \pi  }{ 2 }  \right) -\left\{ 0+\cfrac { 25 }{ 2 } (0) \right\} =\cfrac { 25\pi  }{ 4 } -0$$
    $$\quad I=\cfrac { 25\pi  }{ 4 } $$
  • Question 9
    1 / -0
    The value of $$\displaystyle \int_{0}^{\dfrac {\pi}{4}} (\sqrt {\tan x} +  \sqrt {\cot x})\,\, dx$$ is equal to
    Solution
    $$\begin{align} y & =\int_{0}^{\dfrac{\pi}{4}}  \left( \sqrt { \tan  x } +\sqrt { \cot  x }  \right) \, dx \\  & =\sqrt { 2 } \int_{0}^{\dfrac{\pi}{4}}  \frac { \sin  x+\cos  x }{ \sqrt { \sin  2x }  } \, dx \\  & =\sqrt { 2 } \int_{0}^{\dfrac{\pi}{4}}  \frac { (\sin  x+\cos  x)' }{ \sqrt { 1-(\sin  x-\cos  x)^{ 2 } }  } \, dx \\  & =\sqrt { 2 } \int_{0}^{\dfrac{\pi}{4}}  \frac { 1 }{ \sqrt { 1-u^{ 2 } }  } \, du \\  & =\sqrt { 2 } \sin ^{ -1 } u \\  & =\sqrt { 2 } \sin ^{ -1 } (\sin  x-\cos  x) \end{align}$$
    Now applying limits, we get 
    $$y=\sqrt { 2 }  \sin ^{ -1 }{ \left(\sin { \dfrac { \pi  }{ 4 }  } -\cos { \dfrac { \pi  }{ 4 }  } \right) } -\sqrt{2}\sin ^{ -1 }{ (\sin { 0 } -\cos { 0 } )  } \\ =\sqrt { 2 } \times \dfrac { \pi  }{ 2 } =\dfrac { \pi  }{ \sqrt { 2 }  } $$
    Hence, the answer is $$\dfrac{\pi}{\sqrt 2}$$
  • Question 10
    1 / -0
    $$\int _{ a }^{ b }{ \cfrac { \log { x }  }{ x }  } dx=.......\quad $$ (where $$a,b\in { R }^{ + }$$)
    Solution
    $$I=\int _{ a }^{ b }{ \cfrac { \log { x }  }{ x }  } dx\quad (a,b+{ R }^{ + })=\int _{ a }^{ b }{ \log { x } \left( \cfrac { d }{ dx } \log { x }  \right)  } dx$$
    $$=\cfrac { 1 }{ 2}{ { \left[ { \left( \log { x }  \right)  }^{ 2 } \right]  }_{ a }^{ b } } \left( \therefore \int { { \left( f(x) \right)  }^{ n }f'(x) } dx=\cfrac { { \left( f(x) \right)  }^{ n+1 } }{ n+1 }  \right) $$
    $$=\cfrac { 1 }{ 2 } { \left[ { \left( \log { a }  \right)  }^{ 2 }-{ \left( \log { b }  \right)  }^{ 2 } \right]  } =\cfrac { 1 }{ 2 } { \left[ \left( \log { b } +\log { a }  \right) \left( \log { b } -\log { a }  \right)  \right]  } $$
    $$\therefore I=\cfrac { 1 }{ 2 } \log { \left( ab \right)  } \log { \left( \cfrac { b }{ a }  \right)  } $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now