Self Studies

Integrals Test - 37

Result Self Studies

Integrals Test - 37
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\displaystyle \int \dfrac{\{f(x) \cdot \phi' (x) - f'(x) \cdot \phi(x) \}}{f(x) \cdot \phi(x)} \{log \,\phi(x) - log \,f(x) \}dx$$ is equal to
    Solution
    $$I=\displaystyle\int\left\{\dfrac{f(x)\phi'(x)-f'(x).\phi(x)}{f(x).\phi(x)}\right\}\left\{\log\phi(x)-\log f(x)\right\}dx$$
    $$=\displaystyle\int \left\{\dfrac{f(x)\phi'(x)-f'(x)\phi(x)}{f(x)\phi(x)}\right\}f(x)\log\dfrac{\phi(x)}{f(x)}dx$$
    Let $$\log\dfrac{\phi (x)}{f(x)}=t$$
    $$\dfrac{f(x)}{\phi(x)}\left(\dfrac{f(x)\phi'(x)-f'(x)\phi(x)}{f^2(x)}\right)dx=dt$$
    $$=\displaystyle\int t dt$$
    $$=\dfrac{t^2}{2}+k$$
    $$=\dfrac{1}{2}\left[\log \dfrac{(\phi(x)}{f(x)}\right]^2+k$$
    $$\therefore I=\dfrac{1}{2}\left[\log \dfrac{\phi(x)}{f(x)}\right]^2+k$$.
  • Question 2
    1 / -0
    $$\int \log _ { 10 } x d x =$$
    Solution

    $$\int log_{10}xdx\\=\int(\dfrac{log_ex}{log_e10})dx\\=(\dfrac{1}{log_e10})\int logx\cdot1\cdot dx\\(\dfrac{1}{log_e10})[(logx)\cdot x-\int(\dfrac{1}{x}\cdot x dx)]\\=(\dfrac{d1}{log_e10})(xlogx-x)+c\\=x((\dfrac{log_ex}{log_e10})-(\dfrac{1}{log_e10}))+c\\=x(log_{10}x-log_{10}e)+C$$

  • Question 3
    1 / -0
    Evaluate: $$\displaystyle\int \frac { 1 } { ( x + 2 ) \sqrt { x + 1 } } d x $$
    Solution
    $$I=\displaystyle\int _{  }^{  }{ \frac { 1 }{ { (x+2)\sqrt { x+1 }  } } dx }  $$

    $$ Substitute\, u=\sqrt { x+1 }  $$

    $$du=\dfrac 1{2\sqrt{x+1}}dx$$

    $$=2\displaystyle\int _{  }^{  }{ \dfrac { 1 }{ { 1+{ u^{ 2 } } } } du }  $$

    $$ =2{ \tan ^{ -1 }  }u+C $$

    $$ =2{ \tan ^{ -1 }  }\left( { \sqrt { x+1 }  } \right) +C$$

    Hence the correct option is $$A,\,2{ \tan ^{ -1 }  }\left( { \sqrt { x+1 }  } \right) +C$$
  • Question 4
    1 / -0
    Evaluate: $$\int _{ 1/3 }^{ 1 }{ \cfrac { { \left( x-{ x }^{ 3 } \right)  }^{ 1/3 } }{ { x }^{ 4 } }  } dx=$$
    Solution
    $$I=\displaystyle\int^1_{1/3}\dfrac{x^{1/3}(1-x^2)^{1/3}}{x^4}dx$$
    Let $$x=\sin\theta, dx=\cos\theta d\theta$$
    $$I=\displaystyle\int^{\pi/2}_{\sin^{-1}1/3}\dfrac{(\sin\theta)^{1/3}(\cos^{2/3}\theta)}{\sin^4\theta}\times \cos\theta d\theta$$
    $$=\displaystyle\int \dfrac{\cos^{5/3}\theta}{\sin^{11/3}\theta}d\theta \times \dfrac{\cos^2\theta}{\cos^2\theta}$$
    $$=\displaystyle\int \dfrac{\cos^{11/3}\theta}{\sin^{11/3}\theta\cos^2\theta}d\theta$$
    $$=\displaystyle\cot^{11/3}\theta .\sec^2\theta d\theta$$
    Let $$\tan\theta =t$$
    $$\Rightarrow \sec^2\theta d\theta =dt$$
    $$=\displaystyle\int t^{-11/3}dt$$
    $$=\dfrac{t^{-8/3}}{(-8/3)}=\dfrac{-3}{8}t^{-8/3}$$
    $$=\left.\dfrac{-3}{8}(\tan\theta)^{-8/3}\right|^{\pi/2}_{\sin^{-11}1/3}$$
    As $$\sin^{-11/3}=\tan^{-1}\dfrac{1}{2\sqrt{2}}$$
    $$\Rightarrow I=\dfrac{-3}{8}\left(\dfrac{1}{(\infty)^{8/3}}-\left(\dfrac{1}{2\sqrt{2}}\right)^{-8/3}\right)$$
    $$=\dfrac{3}{8}\times (2\sqrt{2})^{8/3}=\dfrac{3}{8}(2^{3/2})^{8/3}$$
    $$=\dfrac{3}{8}\times 16=6\Rightarrow (C)$$.
  • Question 5
    1 / -0
    Evaluate:
    $$\int x ^ { x } \ln ( e ^x ) d x$$  
    Solution
    Let $$x^x=z$$

    So, $$x\log x=\log z$$

    Now on differentiating

    $$(1+\log x)=\cfrac{1}{z}\cfrac{dz}{dx}$$

    $$\implies dz=x^x(1+\log x)dx$$

    Let $$I=\int x^x(\log e^x)dx$$

    $$\implies I=\int x^x(\log e+\log e^x)dx$$

    $$\implies I=\int x^x(1+\log e^x)dx$$

    Let $$x^x=z$$

    We get $$x^x(1+\log x)dx=dz$$

    So, $$I=\int dz=z+c=x^x+C$$
  • Question 6
    1 / -0
    Evaluate: $$\displaystyle \int _ { 0 } ^ { \pi / 4 } \sec ^ { 7 } {\theta} \sin ^ { 3 } {\theta} {d \theta} =$$
    Solution
    $$\displaystyle \int_{0}^{\pi /4} sec^{7}\theta \sin^{3}\theta d\theta $$

    $$=\displaystyle \int_{0}^{\pi /4} \frac{\sec^{4}\theta }{\cos^{3}\theta }sin^{3}\theta d\theta $$

    $$=\displaystyle\int_{0}^{\pi /4} \tan^{3}\theta \sec^{4}\theta d\theta $$

    $$= \displaystyle\int_{0}^{\pi /4} \tan^{3}\theta \sec^{2}\theta .\sec^{2}\theta d\theta  $$

    $$ =\displaystyle\int_{0}^{\pi /4} tan^{3}\theta (1+tan^{2}\theta )\sec^{2}\theta d\theta $$

    $$ u = tan\theta \Rightarrow du = \sec^{2}\theta d\theta $$

    $$ =\displaystyle\int_{0}^{1} u^{3}(1+u^{2})du $$

    $$ =\displaystyle\int_{0}^{1} (u^{5}+u^{3})du $$ 

    $$ = \dfrac{u^{6}}{6}+\dfrac{u^{4}}{4}|_{0}^{1} $$

    $$ = \dfrac{1}{6}+\dfrac{1}{4} = \dfrac{5}{12} $$ 
  • Question 7
    1 / -0
    The value of the defined integral $$\displaystyle \int^{\pi/2}_{0}(\sin x+\cos x)\sqrt {\dfrac {e^{x}}{\sin x}}dx$$ equals
  • Question 8
    1 / -0
    $$\displaystyle \int \frac { 1 - x ^ { 2 } } { \left( 1 + x ^ { 2 } \right) \sqrt { 1 + x ^ { 4 } } } d x$$ is equal to 
  • Question 9
    1 / -0
    $$\displaystyle \int \dfrac { d x } { \sin ^ { 2 } x \cos ^ { 2 } x }$$ equals-
    Solution
    $$I=\int \dfrac{dx}{\sin^{2}x\,\cos^{2}x} $$

    $$I= \int \dfrac{\sin^{2}x+cos^{2}x}{\sin^{2}x\,cos^{2}x}dx $$

    $$I= \int (\dfrac{1}{cos^{2}x}+\dfrac{1}{sin^{2}x})dx = \int (\sec^{2}x+cosec^{2}x)dx $$

    $$I=\ tanx-\cot x+c $$
  • Question 10
    1 / -0
    $$\int { { e }^{ x^{ 3 } }+{ x }^{ 2-1 }(3{ x }^{ 4 }+{ 2x }^{ 3 }+{ 2x }^{ 2 }\quad x=h(x)+c } $$ then the value of $$h(1)h(-1)$$.
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now