Self Studies

Integrals Test - 38

Result Self Studies

Integrals Test - 38
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\int _{ 0 }^{ 1 }{ \dfrac { dx }{ \left( { x }^{ 2 }+1 \right) \left( { x }^{ 2 }+2 \right)  }  } $$=
    Solution

  • Question 2
    1 / -0
    $$\int \left( x ^ { 6 } + 7 x ^ { 5 } + 6 x ^ { 4 } + 5 x ^ { 3 } + 4 x ^ { 2 } + 3 x + 1 \right) e ^ { x } d x$$ equals
    Solution
    $$\displaystyle\int (x^6+7x^5+6x^4+5x^3+4x^2+3x+1)e^xdx$$
    $$=\displaystyle\int (x^6+6x^5)e^xdx+\displaystyle\int (x^5+5x^4)e^xdx+\displaystyle\int (x^4+4x^3)e^xdx+\displaystyle\int (x^3+3x^2)e^xdx=\displaystyle\int (x^2+2x)e^xdx+\displaystyle\int (x+1)e^xdx$$.
    $$\displaystyle\int [f(x)+f'(x)]e^xdx=f(x)e^x$$
    Using this fact, we get
    $$\displaystyle\int (x^6+6x^5)e^xdx=\displaystyle\int (x^6+(x^6)')e^xdx$$
    $$=x^6\cdot e^xdx$$
    Hence G.E$$=x^6e^x+x^5e^x+...…+xe^x+c$$
    $$=\displaystyle\sum^6_{i=1}x^ie^x+c$$.

  • Question 3
    1 / -0
    Evaluate$$\displaystyle \int _ { 0 } ^ { a } \dfrac { x d x } { \sqrt { a ^ { 2 } + x ^ { 2 } } } $$
    Solution
    $$\displaystyle \int _{ 0 }^{ a }{ \cfrac { xdx }{ \sqrt { { a }^{ 2 }+{ x }^{ 2 } }  }  } $$

    Let $$t=\left( { a }^{ 2 }+{ x }^{ 2 } \right) \Rightarrow dt=2xdx$$

    when $$x=0,t={ a }^{ 2 }\quad $$

    when $$x=a,t=2{ a }^{ 2 }$$

    $$\displaystyle =\cfrac { 1 }{ 2 } \int _{ { a }^{ 2 } }^{ 2{ a }^{ 2 } }{ \cfrac { 2xdx }{ \sqrt { { a }^{ 2 }+{ x }^{ 2 } }  }  } =\cfrac { 1 }{ 2 } \int _{ { a }^{ 2 } }^{ 2{ a }^{ 2 } }{ \cfrac { dt }{ \sqrt { t }  }  } =\cfrac { 1 }{ 2 } \int _{ { a }^{ 2 } }^{ 2{ a }^{ 2 } }{ { t }^{ -1/2 }dt } $$

    $$=\cfrac { 1 }{ 2 } \quad { \left[ \cfrac { { t }^{ -1/2+1 } }{ -\cfrac { 1 }{ 2 } +1 }  \right]  }_{ { a }^{ 2 } }^{ 2{ a }^{ 2 } }=\cfrac { 1 }{ 2 } \quad { \left[ \cfrac { \sqrt { t }  }{ \cfrac { 1 }{ 2 }  }  \right]  }_{ { a }^{ 2 } }^{ 2{ a }^{ 2 } }=\cfrac { 2 }{ 2 } \left[ \sqrt { 2{ a }^{ 2 } } -\sqrt { { a }^{ 2 } }  \right] $$

    $$=a\left( \sqrt { 2 } -1 \right) $$
  • Question 4
    1 / -0
    Evaluate $$\displaystyle \int _ { 0 } ^ { \infty } \frac { x ^ { 2 } + 1 } { x ^ { 4 } + 7 x ^ { 2 } + 1 } d x $$
    Solution
    $$\displaystyle\int_0^{\infty}\dfrac{x^2+1}{x^4+7x^2+1}dx$$

    Let 
    $$I=\displaystyle\int_0^{\infty}\dfrac{x^2+1}{x^4+7x^2+1}dx$$

    $$=\displaystyle\int_0^{\infty}\dfrac{1+\dfrac{1}{x^2}}{x^2+7+\dfrac{1}{x^2}}$$

    $$=\displaystyle\int_0^{\infty}\dfrac{1+\dfrac{1}{x^2}}{x^2-2+\dfrac{1}{x^2}+9}$$

    $$=\displaystyle\int_0^{\infty}\dfrac{1+\dfrac{1}{x^2}}{\left(x-\dfrac{1}{x}\right)^2+(3)^2}$$

    Let $$x-\dfrac{1}{x}=t$$
    $$\left(1+\dfrac{1}{x^2}\right)dx=dt$$

    $$I=\displaystyle\int_0^{\infty}\dfrac{dt}{t^2+(3)^2}$$

    $$I=\left[\dfrac{1}{3}\tan^{-1}\left(\dfrac{t}{3}\right)+c\right]^{\infty}_0$$

    $$I=\left[\dfrac{1}{3}\tan^{-1}\left(\dfrac{x^2-1}{3x}\right)+c\right]^{\infty}_0$$

    $$I=\dfrac{1}{3}\left[\dfrac{\pi}{2}-\left(\dfrac{-\pi}{2}\right)\right]$$

    $$I=\dfrac{\pi}{3}$$
  • Question 5
    1 / -0
    The intercepts on x-axis made by tangents to the curve, $$\int _{ 0 }^{ x }{ \left| t \right|  } dt,x\in R,$$ which are parallel to the line y=2x, are equal to:
    Solution

  • Question 6
    1 / -0
    $$\int _{ 0 }^{ \pi  }{ \cfrac { { x }^{ 2 } }{ { \left( 1+sinx \right)  }^{ 2 } }  } dx$$ equals
  • Question 7
    1 / -0
    The value of $$\int _{ -1 }^{ 1 }{ \dfrac { { cot }^{ -1 }x }{ \pi  }  } dx$$
    Solution

  • Question 8
    1 / -0
    The value of the integral $$\displaystyle \int_{-\pi/2}^{\pi/2} \left(x^{2}+\log \dfrac{\pi-x}{\pi+x}\right) \cos x dx $$ is 
    Solution
    $$I=\displaystyle \int_{-\pi/2}^{\pi/2}\left[x^2+log\left( \dfrac{\pi-x}{\pi+x}\right)\right]cosxdx$$
    As,$$\displaystyle \int_{-a}^{a}f(x)dx=0,$$when$$f(-x)=-f(x)$$
    $$\therefore I=\displaystyle \int_{-\pi/2}^{\pi/2}x^2cosxdx+0=2\displaystyle \int_{0}^{\pi/2}(x^2cosx)dx$$
    $$=2\left\{ (x^2sinx)_{0}^{\pi/2}-\displaystyle \int_{0}^{\pi/2}(x^3cosx) \right\}$$
    $$2\left[ \dfrac{\pi^2}{4}-2\left\{(-xcosx)_{0}^{\pi/2}-\displaystyle \int_{0}^{\pi/2}1.(-cosx)dx \right\}\right]$$
    $$=2\left[ \dfrac{\pi^2}{4}-2(sinx)_{0}^{\pi/2}\right]=2\left[\dfrac{\pi^2}{4}-2\right]=\left( \dfrac{\pi^2}{2}-4\right)$$
  • Question 9
    1 / -0
    If $$\int \frac { x ^ { 2 } \tan ^ { - 1 } x } { 1 + x ^ { 2 } } d x = \tan ^ { - 1 } x - \frac { 1 } { 2 } \log \left( 1 + x ^ { 2 } \right) + f ( x ) + c$$ then $$f ( x ) =$$
    Solution

    $$\\\int\>(\frac{(1+x^2-1)tan^{-1}x}{1+x^2})dx\\=\int\>\left(1-(\frac{1}{1+x^2})\right)tan^{-1}x\>dx\\=\int\>1.tan^{-1}dx-\int\>(\frac{tan^{-1}x}{1+x^2})dx\\Use\>ILATE\>in\>first\>part\>and\>assume\\tan^{-1}x=t\>for\>second\>integration\\=xtan^{-1}x-\int\>(\frac{1}{1+x^2})\times\>xdx-\int\>t\>dt\\=xtan^{-1}x-(\frac{1}{2})log|1+x^2|-(\frac{t^2}{2})+C\\=xtan^{-1}x-(\frac{1}{2})log|1+x^2|-(\frac{(tan^{-1}x)^2}{2})+C\\\therefore\>C=-(\frac{1}{2})(tan^{-1}x)^2$$

  • Question 10
    1 / -0
    $$\begin{matrix} lim \\ n\rightarrow \infty  \end{matrix}\int _{ 0 }^{ 1 }{ \frac { { nx }^{ { n- }1 } }{ { 1+x }^{ 2 } } dx= } $$
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now