Self Studies

Integrals Test - 39

Result Self Studies

Integrals Test - 39
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\displaystyle \int _{ 0 }^{ { \pi  }^{ 2 } }{ \dfrac { \sin { \sqrt { x }  }  }{ \sqrt { x }  }  }  dx$$ is equal to
    Solution

  • Question 2
    1 / -0
    The integral $$\int _{ 2a/4 }^{ a/2 }{ (2\quad cosecx{ ) }^{ 17 } } $$ dx is equal to:
  • Question 3
    1 / -0
    Solve : $$\int^1_{0^+} \dfrac{x^x(x^{2x} +1)(lnx +1)}{x^{4x}+1} dx$$
    Solution

  • Question 4
    1 / -0
    $$\displaystyle \int \frac { e ^ { x } ( 1 + \sin x ) } { 1 + \cos x } d x =$$
    Solution
    Let $$I=\displaystyle\int\dfrac{e^x(1+\sin x)}{1+\cos x}dx$$

             $$=\displaystyle\int e^x\left(\dfrac{1+2\sin\dfrac{x}{2}\cos\dfrac{x}{2}}{2\cos^2\dfrac{x}{2}}\right)$$

             $$=\displaystyle\int e^x\left(\dfrac{\sin^2\dfrac{x}{2}+\cos^2\dfrac{x}{2}+2\sin\dfrac{x}{2}.\cos\dfrac{x}{2}}{2\cos^2\dfrac{x}{2}}\right)$$

             $$=\displaystyle\int e^x\left(\dfrac{\left(\sin\dfrac{x}{2}+\cos\dfrac{x}{2}\right)^2}{2\cos^2\dfrac{x}{2}}\right)$$

             $$=\displaystyle\int \dfrac{e^x}{2}\left(\dfrac{\sin\dfrac{x}{2}+\cos\dfrac{x}{2}}{\cos\dfrac{x}{2}}\right)^2$$

             $$=\displaystyle\int\dfrac{e^x}{2}\left(\dfrac{\sin\dfrac{x}{2}}{\cos\dfrac{x}{2}}+\dfrac{\cos\dfrac{x}{2}}{\cos\dfrac{x}{2}}\right)^2$$

             $$=\displaystyle\int\dfrac{e^x}{2}\left(\tan\dfrac{x}{2}+1\right)^2$$

             $$=\displaystyle\int\dfrac{e^x}{2}\left(\tan^2\dfrac{x}{2}+1+2\tan\dfrac{x}{2}\right)$$

             $$=\displaystyle\int\dfrac{e^x}{2}\left(\sec^2\dfrac{x}{2}+2\tan\dfrac{x}{2}\right)$$

             $$=\displaystyle\int e^x\left(\dfrac{1}{2}.\sec^2\dfrac{x}{2}+\dfrac{2}{2}\tan\dfrac{x}{2}\right)$$

             $$=\displaystyle\int e^x\left(\tan\dfrac{x}{2}+\dfrac{1}{2}\sec^2\dfrac{x}{2}\right)$$

    Above is in the form of $$e^x[f(x)+f'(x)]dx=e^xf(x)+c$$
             $$=e^x\tan\dfrac{x}{2}+c$$

    $$\therefore$$  $$\displaystyle\int\dfrac{e^x(1+\sin x)}{1+\cos x}dx$$  $$=e^x\tan\dfrac{x}{2}+c$$


  • Question 5
    1 / -0
    The value of the integral $$\int _{ 0 }^{ 1 }{ \sqrt { \frac { 1-x }{ 1+x }  }  } $$ dx is
    Solution

  • Question 6
    1 / -0
    Let $$A = \int _ { 0 } ^ { 1 } \frac { e ^ { t } } { t + 1 }$$ dt,  then the value of $$\int _ { 0 } ^ { 1 } \frac { t e ^ { t ^ { 2 } } } { t ^ { 2 } + 1 } d t$$ is:-
    Solution

  • Question 7
    1 / -0
    The value of the integral $$\int _{ -\pi /2 }^{ \pi /2 }{ \left[ { x }^{ 2 }+log\frac { \pi -x }{ \pi +x }  \right]  } $$ cos x dx is 
    Solution

  • Question 8
    1 / -0
    $$\int _ { 0 } ^ { 1 } \frac { d x } { \sqrt { x + 1 } + \sqrt { x } } d x =$$
    Solution

  • Question 9
    1 / -0
    The value of the integral $$\int _ { - \pi } ^ { \pi } ( \cos p x - \sin q x ) ^ { 2 } d x$$ where $$p , q$$ are integers, is equal to:-
    Solution

  • Question 10
    1 / -0
    $$\int _{ -1 }^{ 1/2 }{ \dfrac { { e }^{ x }\left( 2-{ x }^{ 2 } \right) dx }{ \left( 1-x \right) \sqrt { 1-{ x }^{ 2 } }  }  } $$ is equal to
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now