Self Studies

Integrals Test - 43

Result Self Studies

Integrals Test - 43
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The equation $$\displaystyle\int^{\pi/4}_{-\pi/4}\left(a|\sin x|+\dfrac{b\sin x}{1+\cos x}+c\right)dx=0$$, where a, b, c are constants, gives a relation between.
    Solution

  • Question 2
    1 / -0
    The value of $$\displaystyle\int^{199\pi/2}_{-\pi/2}\sqrt{(1+\cos 2x)}dx$$ is?
    Solution

  • Question 3
    1 / -0
    Evaluate : $$\displaystyle\int^2_1|x^2-3x+2|dx$$
    Solution

  • Question 4
    1 / -0
    The value of the integral $$\displaystyle\int^1_0\dfrac{x^{\alpha}-1}{log \alpha}dx$$, is?
    Solution

  • Question 5
    1 / -0
    Value of $$\displaystyle\int^3_2\dfrac{dx}{\sqrt{(1+x^3)}}$$ is?
    Solution
    Given, $$ \int_{2}^{3} \dfrac{dx}{\sqrt{1+x^3}} $$
    Let us consider the function $$ f(x) = \int_{2}^{3} \dfrac{dx}{\sqrt{1+x^3}} $$
    according to the question putting the lower and upper limit we get,
    $$ f(2) = \dfrac{1}{\sqrt{1+2^3}} = \dfrac{1}{3}$$
    $$ f(3) = \dfrac{1}{\sqrt{1+3^3}} = \dfrac{1}{\sqrt{28}}$$
    $$ \therefore \dfrac{1}{3} > \dfrac{1}{\sqrt{28}} $$ we conclude that the Larger integrating value lies in the point 2
    $$ \therefore  \dfrac{1}{\sqrt{28}} < f(x) < \dfrac{1}{3} $$
    Since, m < f(x) < M $$ \Rightarrow \int m dx < \int f(x) dx < \int M dx \, \, \, [ \, \forall \,  m , M \in \mathbb{R} $$ and be the lower and upper limit of the f(n) ]
    we can conclude that,
    $$ \int_2^3 f(x) dx < \dfrac{1}{3} $$
    Therefore the value is less than 1. (Ans)
  • Question 6
    1 / -0
    The value of $$\int_{1}^{e} \dfrac{1+x^{2} \ln x}{x+x^{2} \ln x} d x$$ is
    Solution
    $$\int_{1}^{e} \dfrac{1+x^{2} \ln x}{x+x^{2} \ln x} d x$$

    $$=\int_{1}^{e} \dfrac{1+x-x+x^{2} \ln x}{x(1+x \ln x)} d x$$

    Splitting them we get,

    $$I =\int_{1}^{e}\left(\dfrac{1}{x}+1\right) d x-\int_{1}^{e} \dfrac{1+\ln x}{1+x \ln x} d x \\$$
    $$=[\ln x+x]_{1}^{e}-[\ln (1+x \ln x)]_{1}^{e} \\$$
    $$=e-\ln (1+e)$$
  • Question 7
    1 / -0
    $$I_{1}=\int_{0}^{\frac{\pi}{2}} \dfrac{\sin x-\cos x}{1+\sin x \cos x} d x, I_{2}=\int_{0}^{2 \pi} \cos ^{6} x d x$$$$I_{3}=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^{3} x d x, I_{4}=\int_{0}^{1} \ln \left(\dfrac{1}{x}-1\right) d x,$$ then
    Solution
    $$\text {  } I_{1} =\int_{0}^{\pi / 2} \dfrac{\sin x-\cos x}{1+\sin x \cos x} d x \\ $$

    $$=\int_{0}^{\pi / 2} \dfrac{\sin \left(\dfrac{\pi}{2}-x\right)-\cos \left(\dfrac{\pi}{2}-x\right)}{1+\sin \left(\dfrac{\pi}{2}-x\right) \cos \left(\dfrac{\pi}{2}-x\right)} d x\\$$

    $$=\int_{0}^{\pi / 2} \dfrac{\cos x-\sin x}{1+\sin x \cos x} d x=-I_{1}\\$$

    $$\Rightarrow I_{1}=0\\$$

    $$I_{3}=0$$ as $$\sin ^{3} x\\$$ is odd

    $$I_{4}=\int_{0}^{1} \ln \left(\dfrac{1-x}{x}\right) d x\\$$

    $$=\int_{0}^{1} \ln \left(\dfrac{1-(1-x)}{1-x}\right) d x\\$$

    $$=\int_{0}^{1} \ln \dfrac{x}{1-x} d x=-I_{4}\\$$

    $$\Rightarrow I_{4}=0\\$$

    $$I_{2}=\int_{0}^{2 \pi} \cos ^{6} x d x=2 \int_{0}^{\pi} \cos ^{6} x d x \neq 0$$
  • Question 8
    1 / -0
    If $$\int_{1}^{2} e^{x^{2}} d x=a,$$ then $$\int_{e}^{e^{4}} \sqrt{\ln x} d x$$ is equal to
    Solution
    $$I_{1}=\int_{e}^{e^{4}} \sqrt{\ln x} d x,$$ putting $$t=\sqrt{\ln x},$$ i.e., $$d t=\dfrac{d x}{2 x \sqrt{\ln x}}\\$$

    $$\Rightarrow d x=2 t e^{t^{2}} d t \\$$

    $$\Rightarrow \int_{e}^{e^{4} \sqrt{\ln x} d x} \\$$

    $$=\int_{1}^{2} 2 t^{2} e^{t^{2}} d t \\$$

    using $$uv$$ integration formula , taking $$2t^2$$ as first function and $$e^{t^2}$$ as second function, we get

    $$=\left.t \cdot e^{t^{2}}\right|_{1} ^{2}-\int_{1}^{2} e^{t^{2}} d t=2 e^{4}-e-a $$
  • Question 9
    1 / -0
    The value of the definite integral $$\displaystyle \int_{0}^{\pi / 2} \dfrac{\sin 5 x}{\sin x} d x$$ is
    Solution
    $$\sin n x-\sin (n-2) x=2 \cos (n-1) x \sin x\\$$
    $$\Rightarrow \displaystyle \int \dfrac{\sin n x}{\sin x} d x=\int 2 \cos (n-1) d x+\int \dfrac{\sin (n-2) x}{\sin x} d x\\$$
    $$\therefore \displaystyle \int_{0}^{\pi / 2} \dfrac{\sin 5 x}{\sin x} d x=\int_{0}^{\pi / 2} 2 \cos 4 x d x+\int_{0}^{\pi / 2} \dfrac{\sin 3 x}{\sin x} d x\\$$
    $$=0+\displaystyle \int_{0}^{\pi / 2} \dfrac{\sin 3 x}{\sin x} d x\\=\displaystyle\int_{0}^{\pi / 2} 3-4sin^2x\ \ d x=\displaystyle\int_{0}^{\pi / 2} 1+2cos2x\ \ d x=\dfrac{\pi}{2}$$
  • Question 10
    1 / -0
    If $$\displaystyle \int_{0}^{t} \dfrac{b x \cos 4 x-a \sin 4 x}{x^{2}} d x=\dfrac{a \sin 4 t}{t}-1,$$ where $$0<t<\dfrac{\pi}{4}$$then the values of $$a, b$$ are equal to
    Solution
    $$\displaystyle I =b \int_{0}^{t} \dfrac{1}{x} \cos 4 x d x-a \int_{0}^{t} \dfrac{1}{x^{2}} \sin 4 x dx$$

    $$=b I_{1}-a I_{2}$$

    $$\displaystyle I_{2} =\int_{0}^{t} \dfrac{1}{x^{2}} \sin 4 x dx$$

    $$\displaystyle =\left\{\left[-\dfrac{1}{x} \sin 4 x\right]_{0}^{t}+4 \int_{0}^{t} \dfrac{\cos 4 x}{x} d x\right\}$$

    $$=\left[-\dfrac{\sin 4 t}{t}+4+4 I_{1}\right],\left\{\lim _{x \rightarrow 0} \dfrac{\sin 4 x}{x}=4\right\}$$

    $$\therefore  I=b I_{1}-a\left\{-\dfrac{\sin 4 t}{t}+4+4 I_{1}\right\}$$

    $$\displaystyle =(b-4 a) \int_{0}^{t} \dfrac{1}{x} \cos 4 x d x+\dfrac{a \sin 4 t}{t}-4 a$$

    $$=\dfrac{a \sin 4 t}{t}-1 \\$$
    $$\displaystyle \therefore (b-4 a) \int_{0}^{t} \dfrac{1}{x} \cos 4 x d x=4 a-1\\$$
    L.H.S. is a function of $$t,$$ whereas R.H:S. is a constant. Hence, we must have $$b-4 a=0$$ and $$4 a-1=0\\$$
    $$\therefore a=\dfrac{1}{4}, b=1$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now