Self Studies

Integrals Test - 47

Result Self Studies

Integrals Test - 47
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let f be a function defined for every x, such that f'' = -f ,f(0)=0, f' (0) = 1, then f(x) is equal to
    Solution
    $$\int f^{''}(x)f^{'}(x)=-\int f(x)f^{'}(x)$$

    $$(f^{'}(x))^{2}=f^{2}(x)+c$$

    $$c=1$$

    $$f^{'}(x)=\sqrt{1-f^{2}(x)}$$

    $$\int \frac{df(x)}{\sqrt{1-f^{2}(x)}}=\int dx$$

    $$sin^{-1}f(x)=x+c$$

    $$f(x)=sin  x$$



  • Question 2
    1 / -0
    Let $$\displaystyle \frac{d}{dx}F(x)=\frac{e^{{s}{m}{x}}}{x}$$ , $$x>0$$. lf $$\displaystyle \int_{1}^{4}\frac{3}{x}e^{{s}{m}{x}^{3}}dx=F(k)-F(1)$$, then one of the possible values of $${k}$$ is
    Solution
    Given: $$\displaystyle\int_{1}^{4} \dfrac{3}{x} e^{\sin{x^3}}dx$$

    Let $$z=x^3\implies dz=3x^2dx=\dfrac{3}{x}x^3dx$$

    $$\implies dz=\dfrac{3}{x}zdx$$

    $$\implies \dfrac{3}{x}dx=\dfrac{dz}{z}$$

    And when $$x=1,z=1$$ and when $$ x=4,z=64$$

    Hence, integration becomes:-

    $$\displaystyle\int_{1}^{64}e^{\sin{z}}\dfrac{dz}{z}$$

    Now it is given that:- $$\dfrac{d}{dx}F(x)=\dfrac{e^{\sin{x}}}{x}, x>0$$

    $$\implies \displaystyle\int_{1}^{64} \dfrac{e^{\sin{z}}}{z}dz$$

    $$=\displaystyle\int_{1}^{64} dF(z)$$

    $$=F(64)-F(1)$$

    Hence, $$k=64$$
  • Question 3
    1 / -0
    $$\displaystyle \int_{0}^{1}\displaystyle \frac{x(2x^{2}+1)}{x^{8}+2x^{6}-x^{2}+1}dx=$$
    Solution
    Let $$\displaystyle I=\int_{0}^{1}\displaystyle \frac{x(2x^{2}+1)}{x^{8}+2x^{6}-x^{2}+1}dx$$
     
    $$=\int_{0}^{1}\displaystyle \frac{(2x^{3}+x)}{(x^{4}+x^{2})^{2}-(x^{4}+x^{2})+1}dx$$

    Put $$t=x^{4}+x^{2}$$
    $$\Rightarrow dt =4x^{3}+2x$$
    Also $$t=0 $$ for $$ x=0 $$ and $$ t=2 $$ for $$ x=1 $$

    So, $$I=\displaystyle \frac{1}{2} \int_{0}^{2} \frac{dt}{t^{2}-t+1}$$

    $$=\displaystyle \frac{1}{2}\int_{0}^{2}\displaystyle \frac{dt}{\left ( t-\displaystyle \frac{1}{2} \right )^{2}+\left ( \displaystyle \frac{\sqrt{3}}{2} \right )^{2}}$$

    $$=\displaystyle \frac{1}{2}.\displaystyle \frac{2}{\sqrt{3}}\left \{ tan^{-1}\displaystyle \frac{2\left ( t-\displaystyle \frac{1}{2} \right )}{\sqrt{3}} \right \}_{0}^{2}$$

    $$=\displaystyle \frac{1}{\sqrt{3}}\left ( tan^{-1} (\sqrt{3})-tan^{-1}\left ( -\displaystyle \frac{1}{\sqrt{3}} \right )\right )$$

    $$=\displaystyle \frac{1}{\sqrt{3}}\left ( \displaystyle \frac{\pi }{3} +\displaystyle \frac{\pi }{6}\right )$$

    $$=\displaystyle \frac{\pi }{2\sqrt{3}}$$
  • Question 4
    1 / -0
    If $$\mathrm{a}>\mathrm{b}$$ then $$\displaystyle \int_{0}^{\pi}\frac{\mathrm{d}\mathrm{x}}{\mathrm{a}+\mathrm{b}\sin \mathrm{x}}=$$
    Solution

  • Question 5
    1 / -0
    If $$I_{n}=\displaystyle \int_{0}^{\infty}e^{-x}x^{n-1} dx$$, then $$\displaystyle \int_{0}^{\infty}e^{-\lambda x}x^{n-1} dx$$ is equal to?
    Solution
    $$I_n=\displaystyle \int_{0}^{\infty }e^{-x}x^{n-1}dx$$

    then $$ I_{1}=\displaystyle \int_{0}^{\infty }e^{-x}x^{n-1}dx$$

    $$I_{1}=\displaystyle \int_{0}^{\infty }e^{-x}\dfrac{((\lambda x)^{n-1})}{\lambda }dx$$

    $$I_{1}=\dfrac{1}{\lambda ^{n}}\displaystyle \int_{0}^{\infty }e^{-t}t^{n-1}dt$$

    $$I_{1}=\dfrac{I_n}{\lambda ^{n}}.$$

    $$ So, \displaystyle \int_{0}^{\infty }e^{-t}x^{n-1}dt=\dfrac{I_n}{\lambda^n }.$$
  • Question 6
    1 / -0
    The value of $$\displaystyle \int_{0}^{\pi}\dfrac {dx}{1+2sin^2x}$$ is
    Solution
    $$\displaystyle I=\displaystyle \int_{0}^{\pi}\frac {dx}{1+2sin^2x} $$

    $$\displaystyle =2\displaystyle \int_{0}^{\pi /2}\frac {dx}{1+2sin^2x}$$     $$\because \displaystyle \int_{0}^{2a}f(x)dx=2\displaystyle \int_{0}^{a} f(x)dx $$ if $$f(2a-x)=f(x)$$

    $$\displaystyle =2\displaystyle \int_{0}^{\pi /2}\frac {\sec^2xdx}{3 \tan^2x+1}$$

    Let $$ t=\tan x $$
    $$\Rightarrow \sec^2 xdx=dt$$

    $$\displaystyle I=2\displaystyle \int_{0}^{\infty}\frac {dt}{3t^2+1}$$

    $$\displaystyle =\frac {2}{\sqrt 3}tan^{-1}\sqrt {3t}\mid_{0}^{\infty}$$

    $$\displaystyle =\frac {\pi}{\sqrt 3}$$
  • Question 7
    1 / -0
    If $$f(x) = x - x^2 +1$$ & $$g(x)=max\left \{ f(t) ;0\leq t< x \right \}$$, then $$\overset {1}{\underset { 0 }{ \int } }  g (x) dx = ?$$
    Solution
    $$f(x) = x - x^2 +1$$ & $$g(x)=max\left \{ f(t) ;0\leq t< x \right \}$$
    y = g(x)
    So, $$\overset {1}{\underset { 0 }{ \int } }g (x) dx=\overset {1/2}{\underset { 0 }{ \int } } f(x)dx+\left [ 1-\dfrac{1}{2} \right ]\times\dfrac{5}{4}$$
    $$=\left [ -\dfrac{x^3}{3}+\dfrac{x^2}{2}+x\right ]_0^{1/2}+\dfrac{5}{8}=\dfrac{29}{24}$$

  • Question 8
    1 / -0

    Directions For Questions

    If $$a=\sum_{r=1}^{\infty }\frac{1}{2r^{2}-r},b=\sum_{r=1}^{\infty }\frac{1}{2r^{2}+r},c=\sum_{r=1}^{\infty }\frac{1}{4r^{3}-1}$$, then answer the following 

    ...view full instructions

    What is the value of a + b ?
  • Question 9
    1 / -0
    The value of $$\displaystyle {\int}_0^{\pi}\frac{dx}{1+2 \sin^2 x}$$ is
    Solution
    Let $$\displaystyle I={\int}_0^{\pi} \frac{dx}{1+2 \sin^2 x}$$ 

    Since, $$\sin (\pi-x)=\sin x$$
    $$\displaystyle =2\int _{0}^{\frac{\pi}{2}} \frac{dx}{1+2\sin^{2}x}$$

    $$\displaystyle=2\int _{0}^{\frac{\pi}2}\frac{\sec^{2}x dx}{\sec^{2}x+2\tan^{2} x}=2\int _{0}^{\frac{\pi}2}\frac{\sec^{2}x dx}{1+3\tan^{2} x}$$

    Put $$\tan x=t\Rightarrow \sec^{2}x  dx=dt$$

    So, $$\displaystyle I=2\int _{0}^{\infty} \frac{dt}{1+3t^{2}} = \frac{2}{\sqrt{3}} [\tan^{-1}{(\sqrt{3}t)}]_{0}^{\infty}$$

    $$\displaystyle I=\frac{\pi}{\sqrt{3}}$$
  • Question 10
    1 / -0
    $$\displaystyle \int_{- \dfrac{\pi}{2}}^{\dfrac{\pi}{2}}\sin^{2}x. \cos^{3} x dx$$ is equal to
    Solution
    Let $$\displaystyle I=\int _{ \dfrac { -\pi  }{ 2 }  }^{ \dfrac { \pi  }{ 2 }  }{ \sin ^{ 2 }{ x\left( 1-\sin ^{ 2 }{ x }  \right) \cos { x } dx }  } $$

    Substitute $$\sin { x } =t\quad \Rightarrow \cos { xdx=dt } $$
    $$\displaystyle I=\int _{ -1 }^{ 1 }{ \left( { t }^{ 2 }\left( 1-{ t }^{ 2 } \right)  \right)  } dt=\int _{ -1 }^{ 1 }{ \left( { t }^{ 2 }-{ t }^{ 4 } \right)  } dt$$

    $$\displaystyle ={ \left( \frac { { t }^{ 3 } }{ 3 } -\frac { { t }^{ 5 } }{ 5 }  \right)  }_{ -1 }^{ 1 }=\frac { 4 }{ 15 } $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now