Self Studies

Integrals Test - 49

Result Self Studies

Integrals Test - 49
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let $$\displaystyle I_1 = \int_1^2 \frac{1}{\sqrt{1 + x^2}} dx$$ and $$I_2 \displaystyle = \int_1^2 \frac{1}{x} dx$$. Then
    Solution
    $$\displaystyle { I }_{ 1 }=\int _{ 1 }^{ 2 }{ \frac { 1 }{ \sqrt { 1+{ x }^{ 2 } }  }  } dx$$

    $$={ \left( \log { \left( x+\sqrt { 1+{ x }^{ 2 } }  \right)  }  \right)  }_{ 1 }^{ 2 }$$

    $$\displaystyle =\log { \left( 2+\sqrt { 5 }  \right)  } -\log { \left( 1+\sqrt { 2 }  \right)  } =\log { \left( \frac { \left( 2+\sqrt { 5 }  \right)  }{ \left( 1+\sqrt { 2 }  \right)  }  \right)  } $$

    $$\displaystyle { I }_{ 2 }=\int _{ 1 }^{ 2 }{ \frac { 1 }{ x }  } dx={ \left( \log { x }  \right)  }_{ 1 }^{ 2 }=\log { 2 } -\log { 1 } =\log { 2 } $$
    $$\therefore { I }_{ 2 }>{ I }_{ 1 }$$
  • Question 2
    1 / -0
    The value of the definite integral $$\displaystyle \int_{ 0 }^{\sqrt{{\ln (\displaystyle \frac{\pi}{2})}}}\cos(e^{x^{2}})2xe^{x^{2}} \:dx$$ is:
    Solution
    Let, $$z=e^{x^2}\implies dz=2xe^{x^2}dx$$

    When $$x=0,z=1$$ and when $$ x=\sqrt{\ln{(\dfrac{\pi}{2})}},z=\dfrac{\pi}{2}$$

    Hence, integration becomes:-
    $$\displaystyle\int_{1}^{\pi/2} \cos{z}dz$$

    $$=\left[\sin{z}\right]_{1}^{\pi/2}$$

    $$=1-(\sin{1})$$
    Hence, the answer is option-(C).
  • Question 3
    1 / -0
    The evaluation of $$\displaystyle \int \frac{pX^{p+2q-1}-qX^{q-1}}{X^{2p+2q}+2X^{p+q}+1}dx$$ is 
    Solution
    Let us take $$\displaystyle \frac{x^{m}}{x^{(p+q)}+1}=t$$ where m is either p or q as seen from the options,

    $$\displaystyle \frac{\mathrm{d} t}{\mathrm{d} x}=\frac{(x^{(p+q)}+1)mx^{m-1}-x^{m}(p+q)x^{p+q-1}}{x^{2p+2q}+1+2x^{p+q}}$$
    $$\displaystyle =\frac{(mx^{(p+q+m-1)}+mx^{m-1}-px^{p+q+m-1}-qx^{p+q+m-1})}{x^{2p+2q}+1+2x^{p+q}}$$
    we want powers of $$p+2q-1$$ and $$q-1$$, so $$m=q,$$
    $$\displaystyle =\frac{(qx^{(p+2q-1)}+qx^{q-1}-px^{p+2q-1}-qx^{p+2q-1})}{x^{2p+2q}+1+2x^{p+q}}$$
    $$\displaystyle =\frac{qx^{q-1}-px^{p+2q-1}}{x^{2p+2q}+1+2x^{p+q}}$$
    $$\displaystyle =\frac{\mathrm{d} t}{\mathrm{d} x}$$
    so the integral will be $$-\dfrac{x^{q}}{x^{(p+q)}+1}$$
  • Question 4
    1 / -0
    $$\displaystyle \int_{1}^{e^{37}}\frac{\pi \sin \left ( \pi \log _{e}x \right )}{x}dx$$ is equal to
    Solution
    Let $$\displaystyle I=\int _{ 1 }^{ e^{ 37 } } \dfrac { \pi \sin  \left( \pi \log _{ e } x \right)  }{ x } dx$$
    Substitute $$\displaystyle \pi \log { x } =t\Rightarrow \dfrac { \pi  }{ x } dx=dt$$

    $$\displaystyle\therefore I=\int _{ 0 }^{ 37\pi }{ \sin { t } dt=-{ \left[ \cos { t }  \right]  }_{ 0 }^{ 37\pi} } \\ =-\left[ \cos { 37\pi  } -\cos { 0 }  \right] =2$$
  • Question 5
    1 / -0
    $$\displaystyle \int_{0}^{2}\sqrt{\frac{2+x}{2-x}}dx$$ is equal to
    Solution
    Let $$\displaystyle I=\sqrt { \frac { 2+x }{ 2-x }  } dt$$
    Put $$\displaystyle t=\frac { 2+x }{ 2-x } \Rightarrow dt=\left( \frac { 1 }{ 2-x } -\frac { -x-2 }{ { \left( 2-x \right)  }^{ 2 } }  \right) dx$$
    $$\displaystyle \therefore I=4\int { \frac { \sqrt { t }  }{ { \left( t+1 \right)  }^{ 2 } } dt } $$

    Put $$\displaystyle u=\sqrt { t } \Rightarrow du=\frac { 1 }{ 2\sqrt { t }  } dt$$
    $$\displaystyle \therefore I=8\int { \frac { { u }^{ 2 } }{ { \left( { u }^{ 2 }+1 \right)  }^{ 2 } }  } du=8\int { \left( \frac { 2 }{ { u }^{ 2 }+1 } -\frac { 1 }{ { \left( { u }^{ 2 }+1 \right)  }^{ 2 } }  \right) du } $$

    $$\displaystyle =\frac { 4\left( \left( { u }^{ 2 }+1 \right) \tan ^{ -1 }{ u-u }  \right)  }{ { u }^{ 2 }+1 } +C$$
    $$\displaystyle =\frac { 4\left( \left( t+1 \right) \tan ^{ -1 }{ \left( \sqrt { t }  \right) -\sqrt { t }  }  \right)  }{ t+1 } +C$$
    $$\displaystyle =\sqrt { \frac { 2+x }{ 2-x }  } \left( x-2 \right) +4\tan ^{ -1 }{ \left( \sqrt { \frac { 2+x }{ 2-x }  }  \right)  } +C$$

    Therefore
    $$\displaystyle \int _{ 0 }^{ 2 }{ \sqrt { \frac { 2+x }{ 2-x }  } dx } =\left[ \sqrt { \frac { 2+x }{ 2-x }  } \left( x-2 \right) +4\tan ^{ -1 }{ \left( \sqrt { \frac { 2+x }{ 2-x }  }  \right)  }  \right] _{ 0 }^{ 2 }$$
    $$\displaystyle =\left[ -2+4\frac { \pi  }{ 2 } - \right] -0=2\pi -2$$

  • Question 6
    1 / -0
    $$\displaystyle\int_0^\infty{f\left(x+\frac{1}{x}\right).\frac{\ln{x}}{x}dx}$$ is equal to
    Solution
    $$I=\int _{ 0 }^{ \infty  }{ f\left( x+\dfrac { 1 }{ x }  \right) .\dfrac { \ln { x }  }{ x } dx } $$
    Let $$x={ e }^{ t }$$
    $$\Rightarrow dx={ e }^{ t }dt$$
    $$I=\int _{ -\infty  }^{ \infty  }{ f\left( { e }^{ t }+{ e }^{ -t } \right) tdt } =0$$        since, $$f\left( { e }^{ t }+{ e }^{ -t } \right) t$$ is an odd function.

    Ans: 0
  • Question 7
    1 / -0
    Evaluate $$\displaystyle\int_0^{\displaystyle\frac{\pi}{4}}{\frac{\sin{x}+\cos{x}}{9+16\{1-{(\sin{x}-\cos{x})}^2\}}dx}$$
    Solution
    Let $$\displaystyle I=\int_0^{\displaystyle\frac{\pi}{4}}{\frac{\sin{x}+\cos{x}}{9+16\{1-{(\sin{x}-\cos{x})}^2\}}dx}$$
    $$\displaystyle\therefore I=\int_0^{\displaystyle\frac{\pi}{4}}{\frac{\sin{x}+\cos{x}}{25-16{(\sin{x}-\cos{x})}^2}dx}$$,
    Substitute $$4(\sin{x}-\cos{x})=t\implies4(\cos{x}+\sin{x})dx=dt$$
    $$\displaystyle\frac{1}{4}\int_{\displaystyle-4}^0{\frac{dt}{25-t^2}}$$
    $$\displaystyle I=\frac{1}{4}.\frac{1}{2(5)}{\left(\log{\left|\frac{5-t}{5+t}\right|}\right)}_{\displaystyle-4}^0$$
    $$\displaystyle=\frac{1}{40}\left[\log{\left|\frac{5-0}{5+0}\right|}-\log{\left|\frac{5+4}{5-4}\right|}\right]$$
    $$\displaystyle=\frac{1}{40}\left[\log{1}-\log{\left(\frac{1}{9}\right)}\right]$$, (where $$\log{1}=0$$)
    $$\displaystyle=\frac{1}{40}[\log{9}]=\frac{2}{40}\log{3}=\frac{1}{20}(\log{3})$$
  • Question 8
    1 / -0
    If $$\displaystyle 2f(x)+f(-x)=\frac{1}{x}\sin{\left(x-\frac{1}{x}\right)}$$, then the value of $$\displaystyle\int_{\frac{1}{e}}^{e}{f(x)dx}$$, is
    Solution
    Since, $$\displaystyle 2f(x)+f(-x)=\frac{1}{x}\sin{\left(x-\frac{1}{x}\right)}$$   ...(i)
    $$\displaystyle\therefore 2f(-x)+f(x)=\frac{1}{x}\sin{\left(x-\frac{1}{x}\right)}$$ (replace $$x$$ by $$-x$$)   ...(ii)
    $$\implies f(x)=f(-x)$$ [subtracting equations (i) and (ii)]
    $$\displaystyle\therefore 3f(x)=\frac{1}{x}\sin{\left(x-\frac{1}{x}\right)}$$
    Hence,

    $$\displaystyle I=\int_{\frac{1}{e}}^{e}{f(x)dx}=\frac{1}{3}\int_{\frac{1}{e}}^{e}{\frac{1}{x}\sin{\left(x-\frac{1}{x}\right)}dx}$$
    Now, put $$\displaystyle x=\frac{1}{t}\Rightarrow\displaystyle dx=-\frac{1}{t^2}dt$$
    $$\displaystyle\therefore I=\frac{1}{3}\int_{e}^{\frac{1}{e}}{t\sin{\left(\frac{1}{t}-t\right)}.\left(-\frac{1}{t^2}\right)dt}$$
    $$\displaystyle=\frac{1}{3}\int_{e}^{\frac{1}{e}}{\frac{1}{t}\sin{\left(t-\frac{1}{t}\right)}dt}$$
    $$\displaystyle=-\frac{1}{3}\int_{\frac{1}{e}}^{e}{\frac{1}{t}\sin{\left(t-\frac{1}{t}\right)}dt}$$
    $$\Rightarrow I=-I\Rightarrow 2I=0\Rightarrow I=0$$
    $$\displaystyle\therefore\int_{\frac{1}{e}}^{e}{f(x)dx}=0$$.
  • Question 9
    1 / -0
    If $$x$$ satisfies the equation $$\displaystyle\left(\int_0^1{\frac{dt}{t^2+2t\cos{\alpha}+1}}\right)x^2-\left(\int_{-3}^3{\frac{t^2\sin{2t}}{t^2+1}dt}\right)x-2=0$$ 
    for $$(0<\alpha<\pi)$$
    then the value of $$x$$ is?
    Solution
    $$\displaystyle \left( \int _{ 0 }^{ 1 }{ \frac { dt }{ t^{ 2 }+2t\cos { \alpha  } +1 }  }  \right) x^{ 2 }-\left( \int _{ -3 }^{ 3 }{ \frac { t^{ 2 }\sin { 2t }  }{ t^{ 2 }+1 } dt }  \right) x-2=0$$

    Here, $$\displaystyle \int _{ -3 }^{ 3 }{ \frac { t^{ 2 }\sin { 2t }  }{ t^{ 2 }+1 } dt } =0 \left(\because f(t)=\frac { t^{ 2 }\sin { 2t }  }{ t^{ 2 }+1 } \text{ is odd}\right)$$

    So, the equation becomes
    $$\displaystyle \left( \int _{ 0 }^{ 1 }{ \frac { dt }{ t^{ 2 }+2t\cos { \alpha  } +1 }  }  \right) x^{ 2 }-2=0$$   ....(1)

    Now,
    $$\displaystyle  \int _{ 0 }^{ 1 }{ \frac { dt }{ t^{ 2 }+2t\cos { \alpha  } +1 }  } =\int _{ 0 }^{ 1 }{ \frac { dt }{ (t+\cos { \alpha  } )^{ 2 }+\sin ^{ 2 }{ \alpha  }  }  } $$

    $$=\displaystyle \frac { 1 }{ \sin { \alpha  }  } \left[{ \tan ^{ -1 }{ \left(\frac { t+\cos { \alpha} }{ \sin { \alpha  }  } \right) }  }\right]_{ 0 }^{ 1 }$$

    $$\displaystyle =\frac { 1 }{ \sin { \alpha  }  }  \left[\tan ^{ -1 }{\cot {\dfrac{\alpha}2 } -\tan ^{ -1 }{ \cot { \alpha  } }  }\right]$$

    $$\displaystyle =\frac { 1 }{ \sin { \alpha  }  } \left[\frac { \pi  }{ 2 }-\frac { \alpha  }{ 2 } -\frac { \pi  }{ 2 } +\alpha\right]$$

    $$\displaystyle =\frac { \alpha  }{ 2\sin { \alpha  }  } $$

    So, equation (1) becomes
    $$\displaystyle\frac { \alpha  }{ 2\sin { \alpha  }  } x^{ 2 }-2=0$$

    $$\Rightarrow \displaystyle x=\pm 2 \sqrt {\frac{\sin \alpha}{\alpha}}$$

    Hence, option D.
  • Question 10
    1 / -0
    The tangent to the graph of the function $$\displaystyle y = f(x)$$ at the point with abscissa x = a forms with the x-axis an angle of $$\displaystyle \pi/3$$ and at the point with abscissa x = b at an angle of $$\displaystyle \pi/4$$, then the value of the integral,
    $$\displaystyle \int_{a}^{b} f'(x).f''(x)dx$$ is equal to
    Solution
    Given , at $$x=a , \frac{dy}{dx}=\tan {\frac{\pi}{3}}=\sqrt{3}$$
    $$\Rightarrow f'(a)=\sqrt{3}$$
    Also, at $$x=b, \frac{dy}{dx}=\tan {\frac{\pi}{4}}=1$$
    $$\Rightarrow f'(b)=1$$
    Now, $$\displaystyle \int_{a}^{b} f'(x).f''(x)dx$$ 
    Put $$f'(x)=t \Rightarrow f''(x)dx=dt$$
            $$=\displaystyle \int_{\sqrt{3}}^{1} t dt$$
            $$=-\displaystyle \int_{1}^{\sqrt{3}} t dt$$

            $$\displaystyle =-[\frac{t^{2}}{2}]_{1}^{\sqrt{3}}$$

            $$=-1$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now