Let $$\displaystyle I=\int_{ {1}/{3}}^1\frac {(x-x^3)^{\frac {1}{3}}}{x^4}dx$$
Put $$x=\sin\theta $$
$$\Rightarrow dx=\cos\theta \, d\theta $$
When $$x=\cfrac {1}{3},\theta =\sin^{-1}\left (\cfrac {1}{3}\right )$$ and when $$x=1, \theta =\cfrac {\pi}{2}$$
$$\Rightarrow \displaystyle I=\int_{\sin^{-1}\left (\frac {1}{3}\right )}^{\frac {\pi}{2}}\frac {(\sin\theta-\sin^3\theta)^{\frac {1}{3}}}{\sin^4\theta}cos \theta \,d\theta$$
$$\displaystyle =\int_{\sin^{-1}\left (\frac {1}{3}\right )}^{\frac {\pi}{2}}\frac {(\sin\theta)^{\frac {1}{3}}(1-\sin^2\theta)^{\frac {1}{3}}}{\sin^4\theta}\cos \theta \, d\theta$$
$$\displaystyle =\int_{\sin^{-1}\left (\frac {1}{3}\right )}^{\frac {\pi}{2}}\frac {(\sin\theta)^{\frac {1}{3}}(\cos\theta)^{\frac {2}{3}}}{\sin^4\theta}\cos \theta \, d\theta$$
$$\displaystyle =\int_{\sin^{-1}\left (\frac {1}{3}\right )}^{\frac {\pi}{2}}\frac {(\sin\theta)^{\frac {1}{3}}(\cos\theta)^{\frac {2}{3}}}{\sin^2\theta \sin^2\theta}\cos \theta d\theta$$
$$\displaystyle =\int_{\sin^{-1}\left (\frac {1}{3}\right )}^{\frac {\pi}{2}}\frac {(\cos\theta)^{\frac {5}{3}}}{(\sin\theta)^{\frac {5}{3}}}cosec^2\theta d\theta$$
$$\displaystyle=\int_{sin^{-1}\left (\frac {1}{3}\right )}^{\frac {\pi}{2}}(\cot\theta)^{\frac {5}{3}}cosec^2\theta d\theta$$
Put $$\cot \theta=t $$
$$\Rightarrow -cosec^2\theta \,d\theta=dt$$
When $$\theta=\sin^{-1}\left (\dfrac {1}{3}\right ),t=2\sqrt 2$$ and when $$\theta=\dfrac {\pi}{2}, t=0$$
$$\therefore I=-\int_{2\sqrt 2}^0(t)^{\frac {5}{3}}dt$$
$$\Rightarrow \displaystyle I=\int_0^{2\sqrt 2} (t)^{\frac {5}{3}}dt$$
$$\displaystyle =\left [\frac {3}{8}(t)^{\frac {8}{3}}\right ]_0^{2\sqrt 2}$$
$$\displaystyle =\frac {3}{8}[(2\sqrt 2)^{\frac {8}{3}}]$$
$$=\dfrac {3}{8}[(\sqrt 8)^{\frac {8}{3}}]$$
$$=\cfrac {3}{8}[(8)^{\frac {4}{3}}]$$
$$=\cfrac {3}{8}[16]$$
$$=3\times 2$$
$$=6$$
Hence, the correct Answer is A.