Self Studies

Integrals Test - 56

Result Self Studies

Integrals Test - 56
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of the integral $$\displaystyle \int_{0}^{\pi/4}\dfrac {\sin x + \cos x}{3 + \sin 2x}dx$$ is equal to
    Solution
    Let 
    $$I = \displaystyle \int_{0}^{\pi/4}\dfrac {\sin x + \cos x}{3 + \sin 2x}dx$$

    $$=\displaystyle  \int_{0}^{\pi/4} \dfrac {\sin x + \cos x}{3 + 2\sin x \cos x} dx$$

    $$=\displaystyle  \int_{0}^{\pi/4} - \dfrac {\sin x + \cos x}{(\sin x - \cos x)^{2} - 4} dx$$ ...... (i)

    Put $$\sin x - \cos x = t$$
    $$\Rightarrow (\cos x + \sin x) dx = dt$$
    when $$x = 0\Rightarrow t = -1$$
    and 
    $$x = \dfrac {\pi}{4}\Rightarrow t = 0$$

    $$\therefore$$ Eq. (i) becomes,

    $$I = -\displaystyle \int_{-1}^{0} \dfrac {dt}{t^{2} - 4} = -\dfrac {1}{4} \left [\log \left |\dfrac {t - 2}{t + 2}\right | \right ]_{-1}^{0}$$

    $$= -\dfrac {1}{4}(\log 1 - \log 3)$$

    $$=-\dfrac {1}{4} (0 - \log 3) = \dfrac {1}{4} \log 3$$
  • Question 2
    1 / -0
    The value of $$\displaystyle \int_{0}^{\pi /2} \dfrac {\sin 2t}{\sin^{4}t + \cos^{4}t} dt $$
    Solution
    Let $$I = \displaystyle \int_{0}^{\pi /2} \dfrac {\sin 2t}{\sin^{4}t + \cos^{4}t} dt = \int_{0}^{\pi /2} \dfrac {2\sin t . \cos t}{\sin^{4}t + \cos^{4}t} dt$$

    Divide Nr. and Dr. by $$\cos^{4}t =\displaystyle  \int_{0}^{\pi /2} \dfrac {2\tan t. \sec^{2}t}{(\tan^{2}t)^{2} + 1} dt$$

    put $$\tan^{2}t = x \Rightarrow 2\tan t\sec^2tdt=dx$$ 

    $$\therefore I=\displaystyle \int_{0}^{\infty} \dfrac {1}{1 + x^{2}} dx = \tan^{-1} x \mid_{0}^{\infty} = \dfrac {\pi}{2}$$
  • Question 3
    1 / -0
    $$\displaystyle\int \dfrac{cos^{n-1}}{sin^{n+1}}dx, n\neq 0$$ is ____

    Solution
    $$\int \dfrac{cos^{n-1}x}{sin^{n+1}x}dx$$

    $$=\int (\dfrac{cosx}{sinx})^{n}.\dfrac{1}{cosx.sinx}.dx$$

    $$=\int cot^{n}x.\dfrac{sinx}{cosx}.\dfrac{1}{sin^{2}x}dx$$

    $$=\int cot^{n}x.tanx.cosec^2x dx$$

    $$=\int cot^{n-1}x.cosec^{2} x dx$$

    Let $$cot(x)=t$$, then $$cosec^{2}xdx=-dt$$
    Hence
    $$I=-\int t^{n-1}.dt$$
    $$=\dfrac{-t^{n}}{n}$$
    $$=-\dfrac{cot^{n}x}{n}$$
  • Question 4
    1 / -0
    $$\int { { ({ x }^{ 2 }+5) }^{ 3 } } dx$$
    Solution
    $$\int (x^2 + 5)^3 dx$$
    $$= \int (x^6 + 3(x^2)^2 \times 5 + 3x^2 \times 5^2 + 5^3) dx$$
    $$= \int (x^6 + 15x^4 + 75x^2 + 125) dx$$
    $$= \cfrac{x^7}{7} + 15 \times \cfrac{x^5}{5} + 75 \times \cfrac{x^3}{3} + 125x + c$$
    $$= \cfrac{x^7}{7} + 3x^5 + 25x^3 + 125x +c$$
  • Question 5
    1 / -0
    $$\displaystyle \int {\dfrac{dx}{\sin^2x \cos^2x}}$$
    Solution
    $$\displaystyle \int  \dfrac{4dx}{4\sin ^{2}x\cos ^{2}x}$$

    $$=\displaystyle \int  \dfrac{4dx}{\sin ^{2}2x}$$

    $$=4\displaystyle \int  \text{cosec}^{2}2x dx$$

    $$=-2\cot 2x+C$$

    $$=\dfrac{-2(\cos 2x)}{\sin 2x}+C$$

    $$=\dfrac{2(\sin ^{2}x-\cos ^{2}x)}{2\sin x.\cos x}+C$$

    $$=\dfrac{\sin ^{2}x}{\sin x.\cos x}-\dfrac{\cos ^{2}x}{\sin x.\cos x}+C$$

    $$=\tan x-\cot x+C$$
  • Question 6
    1 / -0
    If $$\displaystyle \int_{\log 2}^{x} \dfrac {dy}{\sqrt {e^{y} - 1}} = \dfrac {\pi}{6}$$, then $$x$$ is equal to
    Solution
    $$\displaystyle \int_{\log 2}^{x} \dfrac {dy}{\sqrt {e^{y} - 1}} = \dfrac {\pi}{6}$$

    Put $$t = e^{y} - 1$$
    $$\dfrac {dt}{dy} = e^{y}\Rightarrow dy = \dfrac {dt}{t + 1}$$

    $$2\displaystyle \int_{1}^{e^{x} - 1} \dfrac {dt}{(t + 1)2\sqrt {t}} = \dfrac {\pi}{6}$$

    $$\Rightarrow 2\displaystyle\int_{1}^{e^{x} - 1} \dfrac {d(\sqrt {t})}{(\sqrt {t})^{2} + 1} = \dfrac {\pi}{6}$$

    $$\tan^{-1} (\sqrt {t})|_{1}^{e^{x} - 1} = \dfrac {\pi}{12}$$

    $$\tan^{-1} (\sqrt {e^{x} - 1}) - \tan^{-1} 1 = \dfrac {\pi}{12}$$

    $$\tan^{-1} (\sqrt {e^{x} - 1}) = \dfrac {\pi}{12} + \dfrac {\pi}{4} = \dfrac {\pi}{3}$$

    $$\sqrt {e^{x} - 1} = \sqrt {3}$$

    $$e^{x} - 1 = 3$$

    $$e^{x} = 4\Rightarrow x = \log_{e}4$$
  • Question 7
    1 / -0
    Evaluate: $$\displaystyle \int \dfrac{(x-1)e^x}{(x+1)^3}dx=$$
    Solution
    Consider, $$\displaystyle I=\int \dfrac{(x-1)e^{x}}{(x+1)^{3}}dx$$

    $$\displaystyle I =\int \dfrac{xe^{x}-e^{x}-2e^x+2e^x}{(x+1)^{3}}dx$$

    $$\displaystyle I =\int \dfrac{(x+1)e^{x}-2e^{x}}{(x+1)^{3}}dx$$

    $$\displaystyle I=\int \dfrac{e^{x}}{(x+1)^{2}}dx-\int\dfrac{2e^{x}}{(x+1)^{3}}dx$$

    Applying ILATE rule to the first integral, gives us

    $$\displaystyle I =\dfrac{e^{x}}{(x+1)^{2}}-\int \left(\dfrac{-2e^{x}}{(x+1)^{3}}\right)dx-\int\dfrac{2e^{x}}{(x+1)^{3}}dx$$

    $$\displaystyle I =\dfrac{e^{x}}{(x+1)^{2}}+\int \left(\dfrac{2e^{x}}{(x+1)^{3}}\right)dx-\int\dfrac{2e^{x}}{(x+1)^{3}}dx$$

    $$\displaystyle I =\dfrac{e^{x}}{(x+1)^{2}}+C$$
  • Question 8
    1 / -0
    Let $$f$$ be a positive function. Let
    $${ I }_{ 1 }=\int _{ 1-k }^{ k }{ xf\left\{ x(1-x) \right\}  } dx$$
    $${ I }_{ 2 }=\int _{ 1-k }^{ k }{ f\left\{ x(1-x) \right\}  } dx$$
    where $$2k-1>0$$. Then $$\cfrac { { I }_{ 1 } }{ { I }_{ 2 } } $$
    Solution
    $${ I }_{ 1 }=\int _{ 1-k }^{ k }{ xf\left\{ x(1-x) \right\}  } dx$$
    $$=\int _{ 1-k }^{ k }{ (1-x)f\left\{ (1-x)(1-(1-x)) \right\}  } dx$$
    $$=\int _{ 1-k }^{ k }{ f\left\{ x(1-x) \right\}  } dx-\int _{ 1-k }^{ k }{ xf\left\{ x(1-x) \right\}  } dx$$
    $$={ I }_{ 2 }-{ I }_{ 1 }$$
    $$\therefore 2{ I }_{ 1 }={ I }_{ 2 }\quad \Rightarrow \cfrac { { I }_{ 1 } }{ { I }_{ 2 } } =\cfrac { 1 }{ 2 } $$
  • Question 9
    1 / -0
    The value of $$\displaystyle\int _{ 0 }^{ { 1 }/{ \sqrt { 2 }  } }{ \dfrac { \sin ^{ -1 }{ x }  }{ { \left( 1-{ x }^{ 2 } \right)  }^{ { 3 }/{ 2 } } } dx } $$ is
    Solution
    Let $$l=\displaystyle\int _{ 0 }^{ { 1 }/{ \sqrt { 2 }  } }{ \dfrac { \sin ^{ -1 }{ x }  }{ { \left( 1-{ x }^{ 2 } \right)  }^{ { 3 }/{ 2 } } } dx }$$

    When $$x=0$$, then $$\sin { t } =0=\sin { 0 } \Rightarrow t=0$$

    When $$x=\dfrac { 1 }{ \sqrt { 2 }  }$$, then $$\sin { t } =\dfrac { 1 }{ \sqrt { 2 }  } =\sin { \dfrac { \pi  }{ 4 }  }$$

    $$ \Rightarrow t=\dfrac { \pi  }{ 4 }$$

    Put $$ x=\sin { t } dx=\cos { t } dt$$

    $$\therefore l=\displaystyle\int _{ 0 }^{ { \pi  }/{ 4 } }{ \dfrac { t }{ \cos ^{ 3 }{ t }  } \cdot \cos { t } dt } =\displaystyle\int _{ 0 }^{ { \pi  }/{ 4 } }{ t\sec ^{ 2 }{ t } dt }$$

     $$ ={ \left[ t\cdot \tan { t }  \right]  }_{ 0 }^{ { \pi  }/{ 4 } }-\displaystyle\int _{ 0 }^{ { \pi  }/{ 4 } }{ \tan { t } dt }$$

     $$ =\dfrac { \pi  }{ 4 } -{ \left[ \log { \sec { t }  }  \right]  }_{ 0 }^{ { \pi  }/{ 4 } }$$

     $$=\dfrac { \pi  }{ 4 } -\log { \sqrt { 2 }  } -0=\dfrac { \pi  }{ 4 } -\log { { 2 }^{ { 1 }/{ 2 } } } =\dfrac { \pi  }{ 4 } -\dfrac { 1 }{ 2 } \log { 2 } $$
  • Question 10
    1 / -0
    Let $$f(x)$$ be a positive function. Let
    $$I_{1} = \int_{1 - k}^{k} xf\left \{x(1 - x)\right \} dx$$,
    $$I_{2} = \int_{1 - k}^{k} f\left \{x(1 - x) \right \} dx$$,
    where $$2k - 1 > 0$$, then $$\dfrac {I_{1}}{I_{2}}$$ is
    Solution
    $$I_{1} = \displaystyle \int_{1 - k}^{k} xf \left \{x (1 - x)\right \}dx$$
    $$= \displaystyle \int_{1 - k}^{k} (1 - x)f\left \{(1 - x)(1 -(1- x))\right \}dx$$
    $$(\because \int_{a}^{b} f(x) dx = \int_{a}^{b} f(a + b - x) dx)$$
    $$=\displaystyle  \int_{1 - k}^{k} (1 - x)f\left \{(1 - x)x\right \}dx$$
    $$= \displaystyle \int_{1 - k}^{k} f\left \{x(1 - x)\right \} dx$$
    $$- \displaystyle \int_{1 - k}^{k} xf \left \{x(1 - x)\right \}dx$$
    Therefore, $$ I_{1} = I_{2} - I_{1}\Rightarrow 2I_{1} = I_{2}$$
    $$\Rightarrow \dfrac {I_{1}}{I_{2}} = \dfrac {1}{2}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now