$$\displaystyle\int_{0}^{\frac{\pi}{4}}{\dfrac{x\sin{x}}{{\cos}^{3}{x}}dx}$$
$$=\displaystyle\int_{0}^{\frac{\pi}{4}}{x\tan{x}{\sec}^{2}{x}dx}$$
Let $$t=\tan{x}\Rightarrow\,dt={\sec}^{2}{x}dx$$
$$\Rightarrow\,x={\tan}^{-1}{t}$$
When $$x=0\Rightarrow\,t=0$$
When $$x=\dfrac{\pi}{4}\Rightarrow\,t=1$$
$$=\displaystyle\int_{0}^{1}{{\tan}^{-1}{t}\,dt}$$
Let $$u={\tan}^{-1}{t}\Rightarrow\,du=\dfrac{1}{1+{t}^{2}}dt$$
$$dv=t\Rightarrow\,v=\dfrac{{t}^{2}}{2}$$
$$=\left[{\tan}^{-1}{t}\dfrac{{t}^{2}}{2}\right]_{0}^{1}-\displaystyle\int_{0}^{1}{\dfrac{{t}^{2}}{2}\times\dfrac{1}{1+{t}^{2}}dt}$$
$$=\dfrac{1}{2}\left[{t}^{2}{\tan}^{-1}{t}\right]_{0}^{1}-\dfrac{1}{2}\displaystyle\int_{0}^{1}{\dfrac{{t}^{2}}{1+{t}^{2}}dt}$$
$$=\dfrac{1}{2}\left[{t}^{2}{\tan}^{-1}{t}\right]_{0}^{1}-\dfrac{1}{2}\displaystyle\int_{0}^{1}{\dfrac{{t}^{2}+1-1}{1+{t}^{2}}dt}$$
$$=\dfrac{1}{2}\left[{t}^{2}{\tan}^{-1}{t}\right]_{0}^{1}-\dfrac{1}{2}\displaystyle\int_{0}^{1}{\dfrac{{t}^{2}+1}{1+{t}^{2}}dt}+\dfrac{1}{2}\displaystyle\int_{0}^{1}{\dfrac{dt}{1+{t}^{2}}}$$
$$=\dfrac{1}{2}\left[{\tan}^{-1}{1}-0\right]-\dfrac{1}{2}\left[t\right]_{0}^{1}+\dfrac{1}{2}\left[{\tan}^{-1}{t}\right]_{0}^{1}$$
$$=\dfrac{1}{2}\left[\dfrac{\pi}{4}-0\right]-\dfrac{1}{2}\left[1-0\right]_{0}^{1}+\dfrac{1}{2}\left[\dfrac{\pi}{4}-0\right]_{0}^{1}$$
$$=\dfrac{\pi}{8}-\dfrac{1}{2}+\dfrac{\pi}{8}$$
$$=\dfrac{2\pi}{8}-\dfrac{1}{2}$$
$$=\dfrac{\pi}{4}-\dfrac{1}{2}$$