Self Studies

Integrals Test - 60

Result Self Studies

Integrals Test - 60
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\displaystyle \int_{0}^{\pi/4}{\dfrac{x.\sin x}{\cos^{3}x}dx}$$ equals to :
    Solution
    $$\displaystyle\int_{0}^{\frac{\pi}{4}}{\dfrac{x\sin{x}}{{\cos}^{3}{x}}dx}$$

    $$=\displaystyle\int_{0}^{\frac{\pi}{4}}{x\tan{x}{\sec}^{2}{x}dx}$$

    Let $$t=\tan{x}\Rightarrow\,dt={\sec}^{2}{x}dx$$

    $$\Rightarrow\,x={\tan}^{-1}{t}$$

    When $$x=0\Rightarrow\,t=0$$

    When $$x=\dfrac{\pi}{4}\Rightarrow\,t=1$$

    $$=\displaystyle\int_{0}^{1}{{\tan}^{-1}{t}\,dt}$$

    Let $$u={\tan}^{-1}{t}\Rightarrow\,du=\dfrac{1}{1+{t}^{2}}dt$$

    $$dv=t\Rightarrow\,v=\dfrac{{t}^{2}}{2}$$

    $$=\left[{\tan}^{-1}{t}\dfrac{{t}^{2}}{2}\right]_{0}^{1}-\displaystyle\int_{0}^{1}{\dfrac{{t}^{2}}{2}\times\dfrac{1}{1+{t}^{2}}dt}$$

    $$=\dfrac{1}{2}\left[{t}^{2}{\tan}^{-1}{t}\right]_{0}^{1}-\dfrac{1}{2}\displaystyle\int_{0}^{1}{\dfrac{{t}^{2}}{1+{t}^{2}}dt}$$

    $$=\dfrac{1}{2}\left[{t}^{2}{\tan}^{-1}{t}\right]_{0}^{1}-\dfrac{1}{2}\displaystyle\int_{0}^{1}{\dfrac{{t}^{2}+1-1}{1+{t}^{2}}dt}$$

    $$=\dfrac{1}{2}\left[{t}^{2}{\tan}^{-1}{t}\right]_{0}^{1}-\dfrac{1}{2}\displaystyle\int_{0}^{1}{\dfrac{{t}^{2}+1}{1+{t}^{2}}dt}+\dfrac{1}{2}\displaystyle\int_{0}^{1}{\dfrac{dt}{1+{t}^{2}}}$$

    $$=\dfrac{1}{2}\left[{\tan}^{-1}{1}-0\right]-\dfrac{1}{2}\left[t\right]_{0}^{1}+\dfrac{1}{2}\left[{\tan}^{-1}{t}\right]_{0}^{1}$$

    $$=\dfrac{1}{2}\left[\dfrac{\pi}{4}-0\right]-\dfrac{1}{2}\left[1-0\right]_{0}^{1}+\dfrac{1}{2}\left[\dfrac{\pi}{4}-0\right]_{0}^{1}$$

    $$=\dfrac{\pi}{8}-\dfrac{1}{2}+\dfrac{\pi}{8}$$

    $$=\dfrac{2\pi}{8}-\dfrac{1}{2}$$

    $$=\dfrac{\pi}{4}-\dfrac{1}{2}$$
  • Question 2
    1 / -0
    The value of $$\cfrac { \int _{ 0 }^{ \pi /2 }{ { \left( \sin { x }  \right)  }^{ \sqrt { 3 } +1 } } dx }{ \int _{ 0 }^{ \pi /2 }{ { \left( \sin { x }  \right)  }^{ \sqrt { 3 } -1 } }  } $$ is
    Solution

  • Question 3
    1 / -0
    The value of $$\displaystyle \int _{-1}^{1} \log{\left(\dfrac{2-x}{2+x}\right)}\sin^{2}{x}dx$$
    Solution

  • Question 4
    1 / -0
    $$\displaystyle\int^1_0\tan^{-1}\left[\dfrac{2x-1}{1+x-x^2}\right]dx=?$$
    Solution

  • Question 5
    1 / -0
    $$\displaystyle\int _{ -1 }^{ 1 }{ x\ell n\left( 1+{ e }^{ x } \right) dx } =$$
    Solution

  • Question 6
    1 / -0
    $$\displaystyle\int^{2+\sqrt{3}}_{2-\sqrt{3}}\dfrac{xdx}{(1+x)(1+x^2)}=?$$
    Solution

  • Question 7
    1 / -0
    $$\displaystyle\int^{2\pi}_0[\sin x]dx$$.
    Solution

  • Question 8
    1 / -0
    $$\int _{ \pi /4 }^{ 3\pi /4 }{ \dfrac { dx }{ 1+\cos { x }  }  }$$ is equal to 
    Solution

  • Question 9
    1 / -0
    Evaluate: $$\displaystyle \int \dfrac { 1 } { x ^ { 2 } \left( x ^ { 4 } + 1 \right) ^ { \frac { 3 } { 4 } } } d x ; x = 0$$
    Solution
    $$I=\displaystyle\int \frac{dx}{x^{2}(1+x^{4})^{3/4}}$$

    $$=\displaystyle\int \frac{dx}{x^{2}\dfrac{(1+x^{4})^{3/4}.x^3}{x^{3}}}$$

    $$I=\displaystyle\int \frac{dx}{x^{5}(\dfrac{(1+x^{4})^{1/4}}{x})^{3}}$$

    $$u=\dfrac{(1+x^{4})^{1/4}}{x}$$

    $$(ux)^{4}= x^{4}+1$$

    $$u^{4}= 1+\dfrac{1}{x^{4}}$$

    $$4u^{3}du = -\dfrac{4\, dx}{x^{5}}$$

    $$u^{3}du=-\dfrac{dx}{x^{5}}$$

    $$I=\displaystyle\int \dfrac{-u^{3}du}{u^{3}}=-\int du$$

    $$= -u+c$$

    $$=-\dfrac{(1+x^{4})^{1/4}}{x}+c$$
  • Question 10
    1 / -0
    If $$\displaystyle \int _{0}^{1}\cot^{-1}(1+x^{2}-x)dx=k\left(\dfrac {\pi}{4}-\log_{e}\sqrt {2}\right)$$, then the value of $$k$$ is equal to
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now